
THÈSE
PRÉSENTÉ À

L’UNIVERSITÉ DE BORDEAUX I
ÉCOLE DOCTORALE DE MATHÉMATIQUES ET D’INFORMATIQUE

Par BRAMAS Bérenger
POUR OBTENIR LE GRADE DE

DOCTEUR
SPÉCIALITÉ : INFORMATIQUE

Optimisation et Parallèlisation de la Méthode des Élements
Frontières pour l’Équation des Ondes dans le Domaine

Temporel

Soutenue le : 15 Février 2016

Après avis des rapporteurs :
BIROS George Professeur - The University of Texas at Austin
VUDUC Richard Professeur (Associé) - Georgia Institute of Technology

Devant la commission d’examen composée de :
BIROS George Professeur - The University of Texas at Austin Rapporteur
COULAUD Olivier Directeur de Recherche - Inria Bordeaux - Sud-Ouest Directeur de Thèse
HAVE Pascal Chercheur - IFP Energies nouvelles Examinateur
LANTERI Stephane Directeur de Recherche - Inria Sophia Antipolis Examinateur
NAMYST Raymond Professeur - Université de Bordeaux Examinateur
SYLVAND Guillaume Chercheur - Airbus Group Innovations
TERRASSE Isabelle Directrice de Recherche - Airbus Group Examinateur
VUDUC Richard Professeur (Associé) - Georgia Institute of Technology Rapporteur

2016



Optimization and Parallelization of the
Boundary Element Method for the Wave

Equation in Time Domain

Bérenger Bramas

in fulfillment of the requirements for the degree of
Doctor in the subject of

Computer Science

February 15th, 2016

Referees George Biros Professor - The University of Texas at Austin
Richard Vuduc Associate Professor - Georgia Institute of Technology

Committee George Biros Professor - The University of Texas at Austin Referee
Olivier Coulaud Research Director - Inria Bordeaux - Sud-Ouest Advisor
Pascal Havé Researcher - IFP Energies nouvelles Examiner
Stephane Lanteri Research Director - Inria Sophia Antipolis Examiner
Raymond Namyst Professor - The University of Bordeaux Examiner
Guillaume Sylvand Researcher - Airbus Group Innovations
Isabelle Terrasse Research Director - Airbus Group Examiner
Richard Vuduc Associate Professor - Georgia Institute of Technology Referee

2



Bérenger Bramas– ©2016
Doctoral School of Mathematics and Computer Science,
Department of Computer Science,
Inria Bordeaux - Sud-Ouest, Université de Bordeaux 1.
Generated the Friday 8th July, 2016 at 11:23



Optimisation et Parallélisation de la Méthode des Éléments
Frontières pour l’Équation des Ondes dans le Domaine Temporel

Bérenger Bramas

Résumé

La méthode des éléments frontières pour l’équation des ondes (BEM) est utilisée en acoustique et

en électromagnétisme pour simuler la propagation d’une onde avec une discrétisation en temps

(TD). Elle permet d’obtenir un résultat pour plusieurs fréquences à partir d’une seule résolution.

Dans cette thèse, nous nous intéressons à l’implémentation efficace d’un simulateur TD-BEM sous

différents angles. Nous décrivons le contexte de notre étude et la formulation utilisée qui s’exprime

sous la forme d’un système linéaire composé de plusieurs matrices d’interactions/convolutions.

Ce système est naturellement calculé en utilisant l’opérateur matrice/vecteur creux (SpMV). Nous

avons travaillé sur la limite du SpMV en étudiant la permutation des matrices et le comportement

de notre implémentation aidé par la vectorisation sur CPU et avec une approche par bloc sur

GPU. Nous montrons que cet opérateur n’est pas approprié pour notre problème et nous pro-

posons de changer l’ordre de calcul afin d’obtenir une matrice avec une structure particulière.

Cette nouvelle structure est appelée une matrice tranche et se calcule à l’aide d’un opérateur spé-

cifique. Nous décrivons des implémentations optimisées sur architectures modernes du calcul

haute-performance. Le simulateur résultant est parallélisé avec une approche hybride (mémoires

partagées/distribuées) sur des nœuds hétérogènes, et se base sur une nouvelle heuristique pour

équilibrer le travail entre les processeurs. Cette approchematricielle a une complexité quadratique

si bien que nous avons étudié son accélération par la méthode des multipoles rapides (FMM). Nous

avons tout d’abord travaillé sur la parallélisation de l’algorithme de la FMM en utilisant différents

paradigmes et nous montrons comment les moteurs d’exécution sont adaptés pour relâcher le po-

tentiel de la FMM. Enfin, nous présentons des résultats préliminaires d’un simulateur TD-BEM

accéléré par FMM .

Mots-clés : calcul haute performance, programmation parallèle, optimisation, vectorisation, GPU,

méthode des éléments frontières, équation des ondes, acoustique, électromagnétisme.
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Optimization and Parallelization of the Boundary Element Method
for the Wave Equation in Time Domain

Bérenger Bramas

Abstract

The time-domain BEM for the wave equation in acoustics and electromagnetism is used to sim-

ulate the propagation of a wave with a discretization in time. It allows to obtain several frequency-

domain results with one solve. In this thesis, we investigate the implementation of an efficient

TD-BEM solver using different approaches. We describe the context of our study and the TD-BEM

formulation expressed as a sparse linear system composed of multiple interaction/convolution

matrices. This system is naturally computed using the sparse matrix-vector product (SpMV). We

work on the limits of the SpMV kernel by looking at the matrix reordering and the behavior of our

SpMV kernels using vectorization (SIMD) on CPUs and an advanced blocking-layout on Nvidia

GPUs. We show that this operator is not appropriate for our problem, and we then propose to

reorder the original computation to get a special matrix structure. This new structure is called a

slice matrix and is computed with a custom matrix/vector product operator. We present an opti-

mized implementation of this operator on CPUs and Nvidia GPUs for which we describe advanced

blocking schemes. The resulting solver is parallelized with a hybrid strategy above heterogeneous

nodes and relies on a new heuristic to balance the work among the processing units. Due to

the quadratic complexity of this matrix approach, we study the use of the fast multipole method

(FMM) for our time-domain BEM solver. We investigate the parallelization of the general FMM

algorithm using several paradigms in both shared and distributed memory, and we explain how

modern runtime systems are well-suited to express the FMM computation. Finally, we investigate

the implementation and the parametrization of an FMM kernel specific to our TD-BEM, and we

provide preliminary results.

Keywords: high-performance computing, parallel programming, optimization, vectorization, GPU,

boundary element method, wave equation, acoustic, electromagnetism.
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Optimisation et Parallélisation de la Méthode des Éléments
Frontières pour l’Équation des Ondes dans le Domaine Temporel

Bérenger Bramas

Résumé Étendu

La méthode des éléments frontières dans le domaine temporel (BEM) en acoustique et en électro-

magnétisme est utilisée pour simuler la propagation des ondes avec une discrétisation en temps

(TD). Elle permet d’obtenir le résultat de plusieurs fréquences en une seule résolution. Dans cette

thèse, nous étudions l’implémentation d’une simulateur TD-BEM efficace sous différents angles.

Nous décrivons le contexte de notre étude et la formulation utilisée qui peut s’exprimer par un sys-

tème linéaire creux composé de plusieurs matrices d’interactions/convolutions. L’objectif est de

calculer l’état des inconnus an au temps n, en utilisant les matrices de convolutionMk et le vecteur

d’illumination ln qui décrit l’impact de l’onde incidente sur le maillage au temps n, par

an = (M0)−1

(
ln −

Kmax∑
k=1

Mk · an−k

)
. (1)

Ce système est naturellement calculé en utilisant le produit matrice vecteur creux (SpMV) sur les

KMax matrices Mk.

Dans cette étude, nous nous intéressons dans un premier temps aux limites du SpMV, de la

permutation des matrices jusqu’à l’implémentation d’un noyau efficace sur CPU ou GPU. Dans un

simulateur industriel, le surcoût d’un algorithme de permutation doit être moindre à comparé du

gain pour le noyau SpMV. Nous montrons qu’une heuristique gloutonne pour graphe a un coût

faible et améliore le stockage des matrices creuses par bloc. Néanmoins, les blocs sont composés

à plus de 50% de zéro, et les performances du SpMV réduisent donc du même facteur. Cette

observation est la motivation principale pour regarder notre problème d’un point de vue différent.

Dans la formulation originale, la boucle externe est sur les KMax matrices, et les boucles in-

férieures sur les lignes et les colonnes de chaque matrice creuse. Nous proposons de réordonner

ce calcul pour obtenir des matrices à la structure particulière car composées d’un vecteur non-nul

par ligne; la boucle externe se fait alors sur les colonnes des matrices creuses. Afin d’avoir un accès

mémoire approprié, les matrices creuses sont remplacées par une nouvelle structure appelée ma-

trices en tranche. Nous étudions l’opérateur correspondant pour utiliser ces nouvelles matrices, et

nous montrons que calculer plusieurs pas de temps simultanément augmente le ratio du nombre

d’opération par mot mémoire par rapport au SpMV. Toutefois, cet opérateur est très sensible aux

optimisations. Nous décrivons notre implémentation sur CPU utilisant la vectorisation en C mais

aussi en assembleur avec pour objectif de réduire le nombre d’accès et d’augmenter l’utilisation des
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registres mémoires. Nous décrivons ensuite un algorithme de parallélisation hybride pour notre

simulateur et démontrons que la factorisation/résolution deM0 devient critique si on augmente le

nombre de nœud.

Nous étendons notre simulateur pour fonctionner sur les architectures hybrides composées de

plusieurs CPU/GPU. Le calcul des matrices en tranche sur GPU est exigeant, et il est obligatoire

d’utiliser une approche par bloc avec des optimisations à la compilation. Nous comparons deux

structures de bloc et leurs noyaux respectifs sur GPU, et nous introduisons une nouvelle heuris-

tique pour équilibrer le travail entre les unités de calculs héterogènes pendant les premières itéra-

tions. Nous validons notre simulateur sur 5 noeuds chacun composés de 24 CPU et 4 GPU, et

nous démontrons que nous avons une bonne accélération lorsque le problème passe en mémoire

dans les GPU.

Néanmoins, cette approche matricielle a une complexité quadratique pour la résolution mais

aussi pour la construction des matrices. Cette complexité peut être limitante quand à la taille du

problème que nous pouvons résoudre et nous incite à étudier un simulateur TD-BEM avec une

accélération par la méthode des multipoles rapides.

Nous nous intéressons dans un premier temps a l’algorithme de la FMM et à sa parallélisation

avec plusieurs paradigmes en mémoire partagée et distribuée. La parallélisation de la FMM est

simple avec une approche fork-join comme celle proposée par OpenMP. D’un autre côté, nous

montrons comment les moteurs d’exécution sont bien adaptés pour vraiment exprimer les dépen-

dance de la FMM.De plus, nousmontrons comment améliorer les peformances grâce à la propriété

commutative des opérations de la FMM. Nous proposons une nouvelle structure de donnée ap-

pelée arbre-en-groupe pour paralleliser la FMM avec un moteur d’exécution. Cet arbre-en-groupe

permet de parametrer la granularité des tâches et potentiellement de réduire le nombre de dépen-

dances. Nous introduisons une nouvelle FMM à base de tâches en mémoire distribuée grâce à

notre arbre-en-groupe. Nous comparons les comportements de différentes implémentations en

mémoire partagée et distribuée pour des simulations de particules. Les différents développements

logiciels sont inclus dans la bibliotheqèe ScalFMM qui est un package libre pour la FMM.

Enfin, nous étudions l’implémentation d’un solver TD-BEM utilisant la FMM et un noyau FMM

approprié. Nous calculons les interactions entre les feuilles en utilisant l’approche matricielle et les

matrices d’interactions, et nous utilisons la FMM pour calculer les interactions lointaines à l’aide

de fonctions définies sur la sphère unité. Cela nous permet de ne pas générer toutes les matrices

d’interactions. Toutefois, cette approche par FMM peut être implémentée de différentes façons et

doit être correctement parametrée. Les différents opérateurs de la FMMpeuvent être calculés dans

le domaine temporel ou fréquentiel, ce qui requiert des transformés de Fourier supplémentaires.

Nous montrons qu’il est plus intéressant de rester dans le domaine temporel si l’on utilise une

méthode d’interpolation appropriée pour effectuer le décalage temporel. De plus, nous n’avons

pas besoin de calculer la FMM en entière à chaque itération si l’on prend en compte le temps mis

par les ondes pour se propager.
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Introduction

The time-domain boundary-element method (TD-BEM) for the wave equation is used to simu-

late the propagation of an acoustic or electromagnetic wave on a surface mesh. More precisely, it

simulates how an incident wave emitted by a source propagates and reflects over the discretization

elements of the mesh with a progression in time. A conversion of the time-domain results with a

Fourier transform allows us to study several frequencies, which makes a TD-BEM solver appro-

priate to study wide-band applications. Nevertheless, the frequency-domain BEM (FD-BEM) has

been more studied than the time-domain formulations [1]. The size of the discretization elements

decreases proportionally with the frequency studied and thus the number of unknowns to cover

the mesh increases quadratically. The use of supercomputers and high-performance computing

(HPC) is necessary to compute large simulations from a memory and workload standpoints.

The TD-BEM formulation used in this study has been introduced in [2] where a problem is

expressed as a linear systemwith a summation stage naturally computed using sparse matrix-vector

products (SpMV). However, this approach has two main limitations. First, it is well known that the

SpMV is a memory-bound operation which achieves a small percentage of the peak performance

on most processing units. Secondly, the generation of the matrices and the solve of the system have

a quadratic complexity relatively to the number of discretization elements of the mesh which may

limit the size of the problems we are able to compute. In this thesis, we investigate how to address

these two issues and to provide an efficient TD-BEM solver for modern HPC architectures. The

resulting application aims at replacing an existing TD-BEM soware based on the SpMV.

Scope of study. The hardware structure of the processing units makes the development of efficient

SpMV extremely challenging because of the low ratio of number of operations against size of the

data. In our case, by reordering the computation, we obtain special matrices with one dense

vector per row which increases this ratio. Therefore, we have focused on the development of an

efficient kernel for such matrices on CPU and GPU. The resulting operator is not a general SpMV,

but is specific to our problem. However, the development and the management of the hardware

particularities are classic and could be applied in various other development. The description of

a fast multipole method (FMM) kernel to accelerate our TD-BEM has been proposed in [3]. We

have studied different parallelization schemes for the general FMM algorithm and use them above

our implementation of TD-BEM FMM kernel. This kernel has been implemented with high level

optimizations but it is still a specific formulation for our TD-BEM.

Manuscript organization. The first chapter provides some details of our TD-BEM formulation

for acoustic and describes the nowadays HPC architectures and their relative challenges. The

related works are developed in the second chapter; it approaches the SpMV operators with its
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optimized implementations and the general FMM algorithm. The last three chapters describe our

contributions and present numerical and performance studies. In chapter 3, we concentrate on the
matrix-approach of the TD-BEM. Then, in chapter 4, we study the FMM parallelization strategies

in shared and distributed memory. In the last chapter, we focus on our TD-BEM accelerated by

FMM and give preliminarily results. Finally, in annexes we provide the material related to the

underlying mathematics and algorithms of our different implementations.

Acknowledgement: this work has been supported by the Airbus Group, Inria and Conseil Régional

d’Aquitaine initiative.
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1
Problem Statement

In this chapter, we give an overview of the context and the background for the different fields that

are connected to our work. We first recall that our development is done inside an industrial context

andwe describe the aim of thewave propagation simulations. Then, we give the core formulation of

our Time-Domain Boundary Element Method (TD-BEM) expressed with the sparse matrix-vector

product (SpMV).We finish by summarizing the nowadays HPC problematics to explain the current

challenges in the development of HPC applications.

1.1 Industrial Application Context.

This work has been done in collaboration with Airbus Group Innovations, an entity of Airbus

Group devoted to research and development for the usage of Airbus Group divisions (Airbus Civil

Aircra, Airbus Defence & Space, Airbus Helicopters). For more than 20 years, the numerical

analysis team has been working on integral equations and boundary element methods for wave

propagation simulations. The resulting soware solutions are daily basis in acoustics for installa-

tion effects computation, aeroacoustic simulations (in a coupled scheme with other tools), and in

electromagnetism for antenna siting, electromagnetic compatibility or stealth. Since 2000, these

frequency-domain Boundary Element Method (BEM) tools have been extended with a multipole

algorithm (called fast multipole method) that allows us to solve very large problems, with tens of

millions of unknowns, in reasonable time on parallel machines. More recently, H-matrix tech-

niques have enabled the design of fast direct solvers, able to solve problems with millions of un-

knowns for a very high accuracy without the usual drawback associated with the iterative solvers:

no control on the number of iterations, difficulty to find a good pre-conditioner, etc. At the same

time, Airbus Group Innovations works on the design and on the optimization of the time-domain

BEM (TD-BEM). The resulting applications presented in this study are a layer of an industrial

computational work-flow and must be robust enough to be used industrially. We delegate to some

existing black-boxes the management of the mesh or the generation of the data to concentrate on
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their computation. Different choices, in terms of algorithms or external libraries, are restricted by

the industrial end-usage.

BEM for theWave Equation Applications. The studies of wave propagations in acoustics and elec-

tromagnetism have numerous applications. In aeronautical engineering, they are used to design

the aircra but also to guarantee their robustness. For example, the position of the motors is im-

portant because it changes the volume of the sound heard inside the cockpit. Besides, the cockpit

of an airplane is mainly composed of metal and all the communications rely on electromagnetic

signals such that it is crucial to ensure that the messages send to the engine/wing controls or the

communication with the ground are correct. The interferences between the components must be

avoided and the reaction to external sources like lightning must be accounted for.

As we clarify in the next sections, the objects are discretized in order to study the problem on

small faces/elements. In Figure 1.1, we show a mesh example of an airplane with three antennas.

Figure 1.1: Discretization of an airplane in amesh.

In Figure 1.2a and Figure 1.2b, we show two results from electromagnetic simulations. The

first is used to study the impact of an antenna on the cabin and the second shows a comparison

between a simulations and results obtained with real measures.

(a)Result from a simulation to study the emission of an
antenna

(b)Comparison of the wave emission obtain numerically by
simulation or with real measures

Figure 1.2: Electromagnetism study examples.
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1.2 Time-Domain Boundary Element Method (TD-BEM) for the Wave Equation

Many physical processes can be described by partial differential equations (PDE) but only few

special cases can be solved analytically. In order to overcome this shortcoming, many numerical

methods have been developed like the BEMs, the FEMs or the spectral methods. The Boundary

Element Method (BEM) is a numerical computational method which solves these PDEs when they

are formulated as integral equations (i.e. in a boundary integral equation form - BIE). These meth-

ods are developed for boundary integral equations that result when boundary value problems on

spatial domains are transformed to integral equations on the boundary of the physical domain. In

the BEM, the 3D geometry of the problem is discretized in space by 2D surfacic mesh elements

to describe only the boundary of the original object [4]. The mathematical details of our problem

formulation are presented in Appendix A, but it is not a prerequisite to the understanding of our

contribution and the implementation parts. Readers who feel concerned by the physical aspects

and the underlying mathematical formulation may read the complete description that leads to the

linear system expression. The given problem description and formulation were taken from [3] and

the time-domain formulation was originally introduced in [2] for electromagnetism. The resulting

linear system for the Maxwell equations in electromagnetism is similar to the one presented here

for the acoustic. Therefore, the computational methods that are proposed in this study can be

easily adapted to electromagnetism.

1.2.1 Linear System Formulation

In this section, we review the key-points of the formulation of our TD-BEM and focus to its linear

system expression. An incident acoustic plane wave w with a velocity c and a wavelength λ is

emitted on a boundary Ω. The surface Ω is discretized by a classical finite-element method using

triangular elements with the unknowns/degrees of freedom located at the vertices. We denote by

N the total number of unknowns in the system. The wave equation is also discretized in time with a

step Δt, and the number of time step T has to be chosen from the frequency range of the study and

the size of the object considered. The illumination vector ln contains the influence of the incident
wave w over the unknowns of the mesh at iteration time tn = nΔt. Once the wave illuminates the

location where the unknowns are defined, it is then reflected by them over the mesh. This complex

behavior is represented numerically by a set of interaction/convolution matricesMk, 0 ≤ k ≤ Kmax.

The aim is to compute the state of the unknowns an at time n using the convolution matricesMk

and the vector ln, which describes the incident wave emitted on the unknowns of the mesh at time

n, by
Kmax∑
k≥0

Mk · an−k = ln . (1.1)

The vectors a and l are of dimensionN and the matricesM of dimensionN×N withN the number

of unknowns. The terms
∑Kmax

k=1 Mk · an−k represent the past taken into account using the previous

states of the unknowns defined by the vectors an−k with k > 0. This equation expresses the fact

that what happens now at time n (an) is the consequence of what happened in the past n− k (an−k)
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on the elements far from k · c · Δt. This distance relation is accounted for in the matrices Mk.

The original Equation (1.1) can be rewritten as in formula (1.2) where the le-hand side is the

state to compute, and the right-hand side is known from the Kmax previous time steps and the test

case definition. For T iterations/time step n > 0, we compute

an = (M0)−1

(
ln −

Kmax∑
k=1

Mk · an−k

)
. (1.2)

1.2.2 Interaction/Convolution Matrices

ThematrixMk contains the interactions between unknowns that are separated by a distance around

k · c · Δt and contains zero for unknowns that are closer or further than this distance. They have

the following properties:

• The number of non-zero values for a given matrix Mk depends on the structure of the mesh

(the distance between the unknowns) and the physical properties of the system c, λ and Δt.
In realistic configurations, the matricesMk are sparse because the elements far from k · c ·Δt
are only a small part of the mesh.

• The matricesMk are zero for k > Kmax = 2+ ℓmax/(cΔt), with ℓmax the diameter of the object

(ℓmax = max(x,y)∈Γ×Γ(|x − y|)).The waves propagate at velocity c and what happens on Γ at

time t will not impact the results aer the date (t+ L/c).

• M0 is almost diagonal since it represents the interaction of the elements with themselves and

their close neighbors.

• The position of the non-zero values in the matrices is driven by the numbering of the un-

knowns and with an appropriate numbering, we expect the matrices to look like Figure 1.3.

M0 M1 M2 MKmax...

Figure 1.3: Expected shape ofMk matrices

Figure 1.4 illustrates the construction of these matrices and shows where the non-zero (NNZ)

values are depending on the delay taken by a wave emitted by an unknown to pass over another one.

Two NNZ values are contiguous in a row, for example Mk(i, j) and Mk(i, j+ 1), if the unknowns j
and j+1 are both at a distance k.c.Δt from i. On the other hand, twoNNZ values are contiguous in a

column, for exampleMk(i, j) andMk(i+1, j), if the unknowns i and i+1 are both at a distance k.c.Δt
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from j. Therefore, numbering consecutively the unknowns that are spatially close is a way among

others to increase the chance to have contiguous values in the interaction matrices. However, with

a few exceptions, it is not possible to find a numbering of the unknowns which leads to perfect

NNZ diagonals for a 3D problem.

A B C

A B C
A
B
C

(a)M0

A B C
A
B
C

A B C

(b)M1

A B C
A
B
C

A B C

(c)M2

A B C
A
B
C

A B C

(d)M3

Figure 1.4: Example ofMk matrices for three unknownsA,B,C in 2D. A wave emitted from each unknown is represented
at every time step. When awave is around an unknown, a value is added in thematrix which is symbolized by a gray square.
All matricesMk with k > 3 are zero since the highest distance between elements is≤ 3cΔt.

In our simulations, the meshes are fixed (constant in time) and this gives important properties

to the matrices and the way of addressing the problem; the matrices are the same at each time step,

they are in finite number and the same matrix M0 is solved at each time step.

1.2.3 Resolution Algorithm

The solution is computed in two steps. In the first step, the past is taken into account using the

previous values of ap with p < n and the interaction matrices as shown in Equation (1.3). The

result sn is subtracted from the illumination vector, see Equation (1.4).

sn =
Kmax∑
k=1

Mk · an−k , (1.3)

s̃n = ln − sn . (1.4)

In the second step, the state of the system at time step n is obtained aer solving the following

linear system

M0an = s̃n . (1.5)

The first step is the most expensive part from a computational standpoint. The solution of

Equation (1.5) is extremely fast, since matrix M0 is symmetric, positive definite, sparse and al-

most diagonal and we can solve it using a sparse direct solver for example. Figure 1.5 represents

graphically an iteration of the solve.

We refer to the process of computing sn as the summation stage and it has to be done at each

time step n from 1 to T. It seems natural to compute this operation using Kmax SpMVs between

the interaction matrices Mk and the past values of the unknowns an−k with 1 ≤ k ≤ Min(n,Kmax).
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~
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5

an-1a
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Figure 1.5: Solve algorithm schematic view

1.2.4 Study Test Cases

In our study, the mesh is discretized using triangular elements with the unknowns/degrees of

freedom located at the vertices in most cases. When required, Gaussian quadrature numerical

technique is used to evaluate integral over these elements. In the present manuscript, we validate

our methods using two test cases: the cone-sphere cases are constructed by aggregating half a

sphere with a cone, as shown in Figure 1.6a, while the airplane is an industrial test case presented

in Figure 1.6b.

(a)Cone-spheremesh example.

(b)Airplanemesh example.

More precisely, we use several variants of the cone-sphere with different number of unknowns

but with the same size of triangles/discretization elements and wave properties. Therefore, the

size of the mesh (in space) increases with the number of unknowns. The specifications of the test

cases are given in Table 1.1 where we provide some information related to the linear systems.

From these information, we can estimate the cost of the simulations in terms of floating-point op-

erations and their memory footprint. If we consider that the solution step of the system associated

with M0 has the cost of a matrix-vector product, the total amount of floating-point operations for

the entire airplane simulation is 130 651 × 109. In addition, it takes 50GB to store the complete
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Case C-927 C-4269 C-10012 C-22468 Airplane

Number of unknowns 927 4269 10012 22468 23962
Number of interaction matrices Mk (Kmax) 117 244 370 551 341

Number of NNZ in the interaction matrices 7.5× 106 1.5× 108 8.6× 108 4.3× 109 5.5× 109

Number of time steps (T) 2033 4345 6647 9957 10823
Number of RHS [1,2] [1,2] [1,2] [1,2] 1

Table 1.1: Specifications of the cone-sphere and airplane cases.

airplane data when working in single precision. Therefore, the use of HPC is mandatory to solve

large problems in a reasonable time.

1.3 Modern HPC

The High-Performance Computing (HPC) is a large domain at the cross between numerous fields.

We state that HPC is related to mainly two problematics, namely solving problems as large as

possible and/or solving problems as fast as possible. So forth the HPC is used for the development

of scientific applications and non-scientific applications. The first category deals with scientific

problems coming from different origins, and it is common to use the name of Scientific Computing

to include them all. It is connected to modeling, physics, applied mathematics and numerical

analysis among others. On the other hand, we find in the second category all the soware that do

not imply numerical problems, and we could refer to network applications, databases, visualization

tools and all the server modules for example. Its related sub-fields are: parallel computing, high-

performance programming, soware engineering and algorithms.

1.3.1 Parallel and High Performance Computing

Nowadays, the computer ecosystem is composed by a high diversity of hardware, which makes the

development for HPC more challenging but also more exciting. In Figure 1.7, we show statistics

taken from the famous TOP-500 [5] which illustrate the constant changes in the fastest supercom-

puters. It shows that the number of cores inside a node is variable and that there is no real dominant

type even if the evolution shows that nodes are fit out with more cores per processor over the time

in Figure 1.7a. For less than ten years, accelerators are becoming a growing part of HPC, and we

can see in Figure 1.7b that not only there is a high diversity of accelerators, but also some of them

have already disappeared aer only a few years of presence in the top. Moreover, the desktop

computers should not be forgotten because it is usual for many users to solve small problems on

their personal machines. These machines are less diverse compared to super-computers; they are

mainly composed by 4 cores and 1 graphic card which might be used as an accelerator.

Thus, developing optimized kernels for a given architecture is one of the major problematics

because it requires to adapt the algorithms and to develop data structures that are well-suited. For

example, the memory hierarchy on CPU or the usage of SIMD can cause significant changes in

the way of addressing a problem. Then, the parallelization i.e. the division of the work, its dis-

tribution and the load balancing above the available resources is necessary. As a final objective,
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Figure 1.7: TOP500 [5] statistics (may not be perfectly accurate because extractedmanually)

HPC applications should be designed to work on a different kind of clusters and to survive to the

technology evolution by being easy to upgrade and to maintain. Since most server applications

are request-oriented, they focus more on concurrency than parallelism by trying to proceed inde-

pendent tasks/applications or requests and to balance them among the servers and their CPUs.

Whereas scientific applications are more parallel with an objective of finishing the earliest with a

dedicated number of resources. In this domain, the more common languages are Fortran, C and

C++ which are all compiled languages.

Parallelization. The shared memory parallelization, over the CPU cores of a node, is usually done

using a native OS thread library like POSIX or anHPC oriented library like the compiler implemen-

tations of the OpenMP [6] standard. Under the hood, the OpenMP implementations can rely on

the POSIX threads, but they propose a different interface and some facilities in the work division.

Based on these libraries, it is common to parallelize HPC scientific applications with the fork-join

paradigm using parallel loop or tasks and barrier synchronizations; the work is parallelized stage

by stage with an explicit barrier between each of them. MPI implementations [7] are the dominant

tools to parallelize in distributed memory, between nodes connected by a network, and most of

the applications developed in the last decades are made above hybrid MPI/OpenMP.

Addressing the development of efficient kernels on accelerators is not an easy task and while

the OpenCL [8] standard is supported by the majority of accelerators, using specific language and

optimizations is still required. For example, anOpenCL kernel can be executed on a CPU or aGPU

but using a shared memory buffer might be a drawback on CPU since this role is already supported

by the hardware cache. From our experience, CUDA [9] is the most appropriate language to

work on NVidia GPUs whereas OpenCL seems well-suited to develop on AMD/ATI GPUs or Intel

Xeon Phi. The plug-in of these kernels inside a parallel application is easy to do by hand with the

dedication of one thread/core per accelerator but the balancing, and the memory transfer can be

extremely tricky and technical. Moreover, it is difficult to be both optimized, by having a good

scalability, and generic, by being efficient on different cluster configurations. Runtime systems

try to address this problem because they give an abstraction of the machine and dissociate the
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algorithm, the kernels and the hardware with the help of advanced schedulers for some of them.

The different available runtime systems might not support the same operations, and in addition

they are not targeting the same architectures. State-of-the-art linear algebra libraries have been

developed at the top of runtime systems and show the potential of such tools [10; 11; 12; 13].

Work balancing. Balancing the workload among different processing units which have distinct

performance capacities is an ongoing research. The problem is even more difficult for irregular

applications because it is challenging to have an accurate performance model and to be able to

split the workload appropriately. The two major solution classes are the division of the work, by

assigning one part of the work to each process depending on its performance capacities, and the

distribution of the work, by generating multiple tasks and scheduling them among the processing

units.

In the division approaches, pure static balancing can be appropriate as in [14] where authors

show interesting results on Sparse Grid Interpolation but this it is not applicable in most of the

cases. When the problem is iterative, it is possible to improve the division at each iteration; starting

from a certainly unbalanced initial guess, the resulting execution time on each processing unit

drives the next division. As an example, such a system is used in [15] where they divide the work

between the CPUs and the GPUs for the Linpack benchmark, and they use the result of an iteration

to better balance the next one. One can see this kind of algorithm as a mix between static and

dynamic balancing.

Dynamic balancing is related to the distribution approaches, and it is mostly naturally imple-

mented using task programming; the whole problem is split in pieces of pertinent granularity,

and then the processing units consume the tasks. But then the original issue is transferred to the

scheduling strategy which should dispatch the work correctly and hide the data movement.

1.3.2 Numerical Operations in Scientific Computing

The fact that numerical operations constitute the costly part of scientific applications must be taken

into account to achieve performance. The problems to solve have different origins but the most

common are from physics: molecular dynamics, fluid dynamics, wave equations, weather predic-

tion, quantum mechanics, etc. Thus scientific computing is at the cross of applied mathematics

(numerical methods, numerical analysis, etc.) and modeling [16]. Any improvement in one of the

layers may signify important changes in the others: the complexity decrease of an algorithm, a

new implementation of a kernel or a new hardware are some examples that might lead to rewrite

completely an application.

Floating-point operations. From the theoretical definition of a numerical algorithm, we can esti-

mate the number of floating-point number instructions based on the different problem parameters.

Such instructions/operations are called Flop for floating-point operations, and we consider that on
modern computer, the time to perform additions/subtractions or multiplications/divisions is about

the same. Thus the Flop cost of a problem can be found for any resolution without even implement-
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ing an application by counting each elementary operation that are needed to solve it. However,

the implementation choice or the architecture where the program is executed may change the way

of counting. For example, some mathematical functions, like cosine or exponential, can be done

by soware using several Flop or by special hardware modules in fewer instructions. Moreover,

modern architectures propose a Floating Multiple-Add (FMADD) instruction to realize two ele-

mentary Flop a+ = b ∗ c and in the literature, it is common to count one FMADD as a single Flop.
Among the implementation choices, we can refer to the extra merge that could be required when

we divide the work between threads and which may change the real number of Flop that have been
performed during an execution. In addition to theoretical estimations, one can rely on hardware

counters to know precisely the number of Flop in an execution which is a nice asset to study low

level optimizations. Finally totaling up these operations provides insight into which parts of the

algorithm are most time-consuming and how computation time increases as the system gets larger.

However, in this study we only count the Flop from the theoretical algorithm or specify explicitly

when doing differently. We do not count the extra Flop coming from implementation choices or

optimizations and when using mathematical operators, we count them using their cost on standard

CPUs. In our description the number of Flop is hardware and implementation independent. From

the Flop cost of a problem and the execution wall time, we get a speed in Flop per second (Flop/s or
GFlop/s) that allow us to compare architectures even if some have better instruction sets or costly

optimizations. It gives us an rough idea of the number of the Floating-Point instructions that have

been performed which might be different from the hardware Flop counters.
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2
Background and State of the Art

In this chapter, we present different sparse-matrix storages and describe the state-of-the-art imple-

mentation of the SpMV. In a second part, we describe the fast multipole method (FMM) algorithm.

Finally, we give a brief overview of some others time-domain BEM formulation and we finish by

introducing the outline of our contributions.

2.1 Sparse Matrix Vector Product (SpMV)

The linear system from the formulation presented in Section 1.2 can be implemented using sparse

matrix-vector product (SpMV). A famous definition of what makes a matrix sparse has been given

in [17]:

“Thematrixmay be sparse, either with the non-zero elements concentrated on a narrow band centered

on the diagonal or alternatively they may be distributed in a less systematic manner. We shall refer to

amatrix as dense if the percentage of zero elements or its distribution is such as tomake it uneconomic

to take advantage of their presence”.

In other words, if there is any advantage by exploiting the zeros, for example, by saving time or

memory, then the matrix should be considered as sparse. Therefore, from this definition the sparse

aspect is related to the context and the numerical algorithm which is the SpMV in our case. The

optimization of the SpMV operator has been widely studied because this is an essential operation

in many scientific applications and the costly part of sparse iterative solvers. However, removing

the zeros of a matrix leads to new storages and new computational kernels and while the gain

of using a sparse matrix instead of a dense one can be huge in terms of memory occupancy and

speed; the effective Flop rate of a sparse kernel is generally remaining low compared to its dense

counterpart. In fact, in a sparse matrix storage, we provide a way to know the respective column

and row of each non-zero value (NNZ). Therefore, the general SpMV is a bandwidth/memory

bound operation because it pays the price of this extra storage and makes it having a low ratio of

Flop to perform against data occupancy. Moreover, the difficulties are amplified by the hierarchical
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memory on modern CPUs and the multi-streaming design of the GPUs.

Researches in optimizing the SpMV have been done for decades and had give two main orienta-

tions. The first includes the matrix storage and the way the values are accessed and computed. The

second part is about reordering the matrices and providing an appropriate matrix access pattern

which can benefit to the storage. Finally, to achieve performance and to remove some hardware

bound, it is required to focus on the specificity of the treated problem: providing an efficient SpMV

for all kinds of matrices is clearly difficult, but implementing a SpMV for matrices with a specific

and structured pattern is much more feasible.

In this section, we introduce somewell-known sparse matrix storages and describe their memory

requirement and some of their advantages/disadvantages on CPU. We give an overview of the

hardware limits and difficulty, and we describe some reordering techniques.

CPU Hardware Consideration

The CPU architecture and its evolution have driven the past research on the SpMV. In the ap-

pendix C we give a reminder of the specificities but recall here the key-points that should be in

mind when looking at SpMV storages. Current CPUs have hard memory constraints, mostly from

the hierarchical aspect with different latencies and bandwidths depending on the location of the

requested data. Therefore, the efficiency of an execution is very sensitive to the temporal and spa-

tial localities. Finally, the speed - in terms of instruction per second - of the CPU is quite high and

have been improved much more than the memory which becomes the bound when the ratio of

Flop per word is low. This has been well studied in various papers as in [18; 19] and it has been

shown that there is a need of register blocking, cache blocking, and if possible multiplication by

multiple vectors.

2.1.1 Sparse Matrix Storages Survey

Despite the numerous different storages, we focus on the most important and include some stor-

ages for specific patterns. A sparse matrix storage represents how the NNZ values of a matrix are

stored in memory but also how they are acceded during the SpMV computation. Therefore, when

we refer to a storage and its quality we might also refer to the resulting performance of the SpMV.

Coordinate (COO) or Element-by-element (EBE) Storage

The more natural way to store a sparse matrix is to use a triple for each NNZ value composed by

the real NNZ value and its original position in the matrix. Such storage is called COO (coordinate)

or EBE (element-by-element) and is illustrated in Figure 2.1. Therefore, for each value we store two

integer indexes and one floating point value, which gives the memory occupancy SCOO = NNNZ ×
(2Si + Sf) with NNNZ the number of NNZ, Si the size of an index (usually an integer of 4 bytes)

and Sf the size of a floating point value (4 or 8 bytes). Using this storage, the memory occupancy

can be large and the memory access pattern can be irregular because it is governed by the matrix

rows/columns ordering and the order of access of the values. However, for a very low amount of
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Figure 2.1: COO/EBEmatrix storage with one triple per NNZ usingmultiple arrays or array of structures.

NNZ if, for example, most of the rows/columns do not even have a single NNZ, this storage is

appropriate and may give above-average performance. Finally, it is useful to save a matrix or to

convert it to another format since it is easy to sort or permute.

Compressed Row Storage (CRS) or Compress Sparse Row (CSR) Storage
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Figure 2.2: CRSmatrix storage: the rowptr array gives the offset position of the NNZ in the colidx and values arrays, these
two arrays contains the values and their corresponding column indexes in rowmajor.

The CRS is a well-known storage and is used as a de-facto standard in SpMV studies. The

main idea of this storage is to avoid storing individual row indexes for each NNZ value but instead

counts the number of values that each row contains. Figure 2.2 presents an example of the CRS

storage. The NNZ values of the original matrix are stored into a values array in row major (one

row aer the other) and in column ascending order. In a secondary array colidx we store the

column indexes of the NNZ values in the same order. Finally, rowptr contains the positions of

the NNZ in values for each row: the row i has NNZ from index rowptr[i] to rowptr[i + 1]. This

storage uses less memory than the COO if the number of NNZ is greater than the number or

rows which is the more common situation. During the computation, the values are read one row

aer the other making the access to the result vector linear and potentially unique. Moreover, the

input vector is read from le to right at each row computation. The data occupancy is given by

SCRS = NNNZ × (Si + Sf) + Si × (nbrow + 1) with nbrow the number of rows in the original matrix.

Reordering/permuting the matrix may improve the spatial locality by having only small jumps in
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the column-direction between values of the same row. This storage also exists with a compression

in the columns called CCS for Compressed Column Storage. Its memory occupancy and data

locality have been studied in details in various papers as in [20].This storage does not target a

particular matrix pattern which makes it appropriate in general.

Fixed-size Block Storage (FSB)
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Figure 2.3: FSBmatrix storage splits generate sub-matrices. In the presented example thematrixA is divided in two sparse
matricesA1 andA2. Any sparse storage can be used of the resultingmatrices but it is common to use a variant of the CRS
storage that benefit of the contiguous values on the rows: rowptr− blocks indexes block of values instead of scalars.

In the CRS format, contiguous values in a row give a good memory access, but no special op-

timization is made to process them whereas it can be an asset to unroll loops (prediction and

pipeline of the instructions) and to have registers blocking. That is why, the FSB storage has been

proposed in [21] and solves some of these drawbacks using a pre-processing of the matrix which

can be costly but beneficial aer one or maybe more SpMVs. The key idea is to extract contiguous

block of values to process them differently and more efficiently. For example, all the blocks of α
contiguous values inside a row from the original matrix A are stored in another matrix Aα. In the

example shown in Figure 2.3, the matrix A is then equal to the sum of A2, containing the blocks

if tile 2, and A1, containing the individual values. Instead of performing a single SpMV using A,
we perform several SpMVs with the different block matrices. The storage of the obtained matri-

ces can be the same, but we can imagine having different storage depending on the size of the

blocks. In the original version, it was proposed to use a variant of the CRS and the size is given

by SFSB = NNNZ × Sf + Si ×
(∑MaxBlock

b=1 nbrow + αb

)
with MaxBlock the size of the largest block

and αb the number of blocks of size b. The final memory occupancy can be greater than the CRS

format depending on the quality of the blocking. The number of blocks and their sizes depend on

the matrix itself but also on the permutations that have been applied to move the values contigu-

ously. However, finding the ideal ordering which maximizes the number of contiguous NNZ (and

minimizes the number of blocks) is a NP-hard problem. This storage was one of the first generic

storages that tried to benefit of local NNZ patterns.
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Figure 2.4: BCSRmatrix storage example for the aligned version with a fixed block dimension of size 2× 2.

Block Compressed Sparse Row Storage (BCSR)

In the FSB storage, the blocks are built from the concatenation of values from the same row while

the BCSR extends this storage by blocking in the column’s direction too. We refer to the dimension

of the blocks by r and c for the number of rows and columns respectively. It has been originally

proposed with blocks of size 2× 2 in [22], but it has been extended with larger blocks of variable

dimension in [18; 23]. Extracting the blocks from a matrix is complex and costly, especially with

variable size, but it is then possible to use very efficient kernels. On the other hand, having a

variable size of block reduces the zero filling which is potentially high when using a unique block

size because a block of size r× cmight contain a single NNZ. In the original BCRS, the blocks are

assumed to be aligned: their upper le position is a multiple of the block dimension. Unaligned

versions, like the unaligned block compressed sparse row (UBCSR), has been proposed in [24].

If we store the blocks and the position of their upper le corner (as a blocked COO) we obtain

SBCOO = (r× c× Β)× Sf + Si × Β× 2 with Β the number of blocks. Otherwise, if we store them

with a CRS approach, we have SBCSR = (r× c×Β)× Sf + Si × (Β+m+ 1). When the variable r is
fixed and c is variable, the storage is called VBL (Variable Block Length) as shown in Figure 2.5.

The size is given by SVBL = NNNZ× Sf+ Si× (2×Β+m+ 1) and if r = 1 there is no zero padding.
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Figure 2.5: VBLmatrix storage, with a block row dimension of r = 1.
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Figure 2.6: VBRmatrix storage, a grid is built around the NNZ values.

Variable Blocking Row Storage (VBR)

The previous presented storages can be considered as generics, but it exists a class of storages that

have been created for particular matrix shapes. The VBR storage is one of these specific storages,

and it has been presented in [25]. This storage creates a grid around the NNZ values, and thus it

is appropriate for matrices with large NNZ block areas. Even so, using this storage for a matrix

with a different pattern is anti-productive and may increase the memory occupancy dramatically.

As shown in Figure 2.6, the matrix is divided to create NNZ blocks without zeros and the borders

of the blocks are valid for the entire matrix. In a values array, we store the NNZ in block order

from top to bottom and le to right. The rowptr and colptr give us the grid by expressing where the
matrix has been cut but without telling which blocks are filled. The bptr array expresses how many

blocks there are on each grid line. The bindx tells in which grid column the blocks are located as

it is done for the NNZ values in the CRS format. Finally, the indx array gives the positions of the
blocks in the values array. The memory occupancy is SVBR = NNNZ×Sf+Si×(Gridcol+1+Gridrow+
1 + Gridrow + B + B + 1) with Gridcol and Gridrow the dimension of the grid and B the number of

filled blocks.

Diagonal Storage (DIA)

a
0,0

 a
0,1

 a
0,2

 a
0,3 

 a
0,4

 a
0,5

 a
0,6

 a
0,7

a
1,0

 a
1,1

 a
1,2

 a
1,3 

 a
1,4

 a
1,5

 a
1,6

 a
1,7

a
2,0

 a
2,1

 a
2,2

 a
2,3 

 a
2,4

 a
2,5

 a
2,6

 a
2,7

a
3,0

 a
3,1

 a
3,2

 a
3,3 

 a
3,4

 a
3,5

 a
3,6

 a
3,7

a
4,0

 a
4,1

 a
4,2

 a
4,3 

 a
4,4

 a
4,5

 a
4,6

 a
4,7

a
5,0

 a
5,1

 a
5,2

 a
5,3 

 a
5,4

 a
5,5

 a
5,6

 a
5,7

a
6,0

 a
6,1

 a
6,2

 a
6,3 

 a
6,4

 a
6,5

 a
6,6

 a
6,7

a
7,0

 a
7,1

 a
7,2

 a
7,3 

 a
7,4

 a
7,5

 a
7,6

 a
7,7

-2  -1  0  1

0 a
3,1 

0 a
5,3

 0 0 | 0 0 0 a
4,3

 a
5,4

 0 0 | a
0,0

 0 a
2,2

 a
4,4

 a
5,5

 0 a
7,7

 | a
0,1

 0 a
2,3

 0 a
4,5

 0 a
6,7

Diag-Offset

values

A

   Diag -2                  Diag -1                      Diag 0                            Diag 1

Figure 2.7: DIAmatrix storage is optimized for matrix with values in the diagonals. In the presented DIA version, it is not
possible to access directly a diagonal because the length of the diagonal is variable.

The DIA storage introduced in [25] is made for matrices that have values in a diagonal fashion
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like the matrices from FEM for example. This storage keeps all the diagonals that contain at least

one NNZ value: the diagonal A(i+ p, j+ p) is stored if a NNZ is located at (i, j), for all p such that
0 ≤ i + p < N and 0 ≤ j + p < N. If the NNZ are on the anti-diagonal A(i,N − i) the complete

matrix is stored. The values are stored in the values array in the diagonal direction, and the offset

of each diagonal is written in diag− offset as shown in Figure 2.7. The memory occupancy is given

by SDIA = (
∑

NDiag(d))×Sf+Si×DwithNDiag(d) the size of the diagonal d (1 ≤ NDiag(d) ≤ N) and
D the number of diagonals stored. The memory occupancy of this storage can be low because from

the single offset index, we know the original position of the NNZ in the source matrix. Moreover,

the computation of a diagonal can be optimized with register blocking, and the memory access

pattern is regular.

Jagged Diagonal Storage Format (JAD)
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Figure 2.8: JAD

The JAD storage introduced in [26] is a good example of advanced structure to improve the

memory occupancy and memory accesses in a sparse storage. As presented in Figure 2.8, the

rows are first sorted according to the number and the position of their NNZ. Aer sorting, a row

has at least the same number of NNZ than the one under it. The values array stores all the NNZ
in column major: it contains all the first values of all rows, then the second values, etc. While the

first row is always included, the number of rows that have a nth NNZ decreases as n increase. This
information is given by the IDIAG array which tells how many rows have at least n NNZ. As in

the CRS storage, the JDIAG array contains the column indexes of the NNZ values. The memory

occupancy is given by SJAD = Sf × NNNZ + (NNNZ + Ntjd + 1) × Si where Ntjd here is the number

of transposed jagged diagonals.

Automatic Kernel/Storage

The block based storages may have efficient kernels, but it has been shown in [27; 28] that there

is not a perfect block dimension r × c because of the matrices and hardware variety. This is why

some automatic methods have been developed to provide auto-tuning and optimizations and tried

to find the more appropriate storage for a given context. These techniques remain generic and
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thus we can expect to perform better when we work on a special shape with fined tuned kernel

and storage.

2.1.2 Reordering

From the different storages presented, the ordering (permutations of the rows and columns) is im-

portant for the memory access pattern, the memory occupancy and the limitation of zeros padding.

In fact, having blocks or any contiguous NNZ is clearly needed to have instruction pipelining and

the use of SIMD, but a wrong ordering will fill the blocks with a lot of zero values, which may be

anti-productive. General techniques which apply for a wide range of application have been pro-

posed. A well known technique called Cuthill-McKee from [29] tries to make a matrix band-width

by applying a breadth first algorithm on a graph which represent the matrix structure such that

the resulting matrices have good properties for LU decomposition. However, the aim of this algo-

rithm is not to improve the SpMV performance even so the generated matrices may have better

data locality.

In [22] a method is proposed to specifically have more contiguous values in rows or columns.

The idea is to create a graph from a matrix where each column is a vertex and by connecting all the

vertices with weighted edges. The weights come from different formulations, but they represent

the interest of putting two columns contiguously. Then we solve the Traveling Salesman Problem

(TSP) to obtain a path that goes through all the nodes but only once and that minimize the cost

of the total weight of the path. Therefore, a path in the graph represents a permutation; when we

add a node to a path it means that we aggregate a column to a matrix in construction.

In the different score definitions, we use the following notations: nj is the number of NNZ in the

column j and common(i, j) refers to the number of NNZ in common between columns i and j. The
NNZ in common between two columns is the number of rows for which the two columns have a

NNZ on as shown in Figure 2.9. From these definitions, if we have ni = nj = common(i, j) then
the two columns i and j have the same structure.

i j k

Figure 2.9: Values in common between columns of a sparsematrix of dimensionN = 5 for two columns. The numbers of
NNZ are ni = 3, nj = 3 and nk = 2. The numbers of NNZ in common are common(i, j) = 1, common(i, k) = 0 and
common(j, k) = 2.

The first formulation to obtain the weights of the edges is given by the following score

d(i, j) = common(i, j) . (2.1)

This score is bounded between 0 and Max(ni, nj) and the aim is to maximize the total score in a

path. However, this score does not take into account the relative number of NNZ into the columns
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and for example the same score is set if two columns containing each 1000 NNZ have 4 NNZ in

commons or two columns of 4 values have all their values in common. Later on, more complex

scores have been created to improve the accuracy and in [24] they propose the following one

d(i, j) =
common(i, j)
Max(ni, nj)

. (2.2)

This score is bounded between 0 and 1 (achieved if two columns are similar) and the objective is

to maximize the total score.

In [30] they proposed another formula

d(i, j) = ni + nj − 2× common(i, j) . (2.3)

The score is between 0 (best) and ni + nj when no values are common, therefore, the goal is here

to minimize the total score.

The TSP is a NP-hard problem, and it is impossible to guarantee the obtention of an optimal

solution. One of the methods to solve it uses a so-called greedy algorithm by generating a path

using the best nearest neighbor algorithm. Then from a initial solution, which can be random,

we can also better it using improvement heuristic as K-opt (usually 3-opt). However, in real ap-

plication all the cost spends in the improvement of a matrix should be amortized by the gain in

computation time, and some methods are not appropriate in real solvers but only interesting for

the study/research.

SpMV with Space Filling Curve

We introduce the space filling curves (SFC) in Section 2.3.4 which are bijections from a n dimen-

sional hypercube into a linear index: Rd → R. While SFC are usually encountered when we work

on spatial problems, it is possible to consider a matrix as a 2D map and to compute a SFC over

it. In [31], they propose to use Morton indexing to reorder the value from a matrix and look at

the improvement in terms of cache usage. In [32], they use Hilbert ordering with BCRS and show

that it can be efficient for unstructured matrices. In [33], they use Hilbert ordering with a fractal

storage and show interesting results in the case of multiple right-hand sides.

2.1.3 Parallel SpMV

SpMV on shared and distributed memory faces two mains problems. The first is how to divide

the work without making the memory access worse than what it is in sequential, for example,

by managing cache sharing. The second problem is how to balance the work and to avoid data

replication everywhere.

One of the first great studies in multi-core SpMV has been presented in [34] where they use low

level optimizations and study different hardwares. They conclude that having good performance

depends on both the hardware and thematrix and that it is difficult to find general rules. In [35], the

authors describe the problem of hierarchical memory across Simultaneous Multithreading (SMT).
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They show that it is needed to reorder the matrix but also to have an appropriate access pattern to

improve the performance. In [36], they concentrate on the distributed SpMV. Using a split method

based on bi-partitioning in 2D, they try to minimize the communication volume. This is a difficult

problem, and for example, they minimize the volume but not the number of messages. In [37],

they introduce a new storage dedicated to the computation of Ax and ATx. They concentrate on
multicore architectures, and their study is a good example of how the SpMV should be optimized

for specific applications. In [38], they present a nice study by looking at various storages and

architectures, and they remind how a static block size is important to have an efficient kernel but

how it can have extra cost with a important zero fillings inside the block. They also show how

difficult it is to find the good parameters.

2.1.4 SpMV on Accelerators

We summarize in the Appendix C.4 the hardware specificity of the GPU. Since the beginning

of development of GPGPU (General-Purpose Processing on Graphics Processing Units) many re-

searches have been done to improve the SpMV on such architecture [39; 40; 41; 42]. Some ap-

proaches use auto-tuning [43; 44] and it has been proposed to divide the input matrices between

CPU and GPU, giving to GPU more appropriate parts (usually more dense parts). These studies

show that the SpMV on GPU has a very low performance against the hardware capacity and mo-

tivates the use of blocking, which is crucial to improve the performances. Nevertheless, the result

efficiencies are not greater than 5% of the peak performance either using CPU storages or GPU

specific storages. In [45], they discuss about the difficulties of obtaining good performance on

GPU and the need of investment to have a good kernel against CPU performance.The SpMV, as

other irregular applications, is clearly not adapted for current GPU architecture and SDK. The opti-

mizations of our implementation on GPU have been inspired by recent works that include efficient

data structures, memory access pattern, global/shared/local memory usage and auto-tunning. The

method to compute multiple small matrix/matrix products from [46] has many similarities with

our implementation (e.g. the use of templates).

2.1.5 Experimental Examples

In order to illustrate the difficulties to achieve performances with SpVM, we present in Figure 2.10

some Flop-rates on modern CPU and GPU that we obtain for various matrix shapes and storages.

We use vendor libraries Intel MKL [47] on CPU and CUDA sparse Blas [9] on GPU. We see that

there is no ideal solution and that some storage perfom better for specific matrix shapes. The last

plot of the graph presents performance for a small dense matrix computed several times; the idea

is to hide the hierarchical memory access by having an important data reuse, and the performances

are improved compared to other matrices, see Dense 200 (x 10000) in the figure. However, the

performances are still low compared to the peak of the processing units which means that the

memory is not the only constraint, and the underlaying kernels may not use register blocking or

offer instruction pipelining. The DIA storage cannot be used for the Random Blocks 5/80000
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since there is at least one value on most of the diagonal, this storage would require to allocate a

matrix of dimension 80000 × 80000. Moreover, the MKL DIA storage stores each diagonal in a

vector of dimension N so in this case the total memory cost is (2N − 1) × N. The results for the
aligned block matrix are disappointing even for the BCSR. Finally, in the most difficult case when

the values are randomly generated, the performances are clearly low, even so, many storages do

not have zero padding.
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Figure 2.10: Example of SpMV usingMKL and cuSparse for different matrices: dense, diagonal, random, random blocks of
dimension 8 × 8 and the same small densematrix computed several times. The format is p/Nwhere p is the percentage of
NNZ andN the dimension of thematrix. The block random cannot be stored using the DIA storage. The small densematrix
several times is not used on GPU since it is made to study the cache/data-reuse effect. The code is executed in sequential
in double precision on amachine with a theoretical peak of 20GFlop/s on CPU (Haswell Intel Xeon E5-2680 2,50 GHz) and
1.43TFlop/s onGPU (K40-M). It has been compiled with Gcc 4.8.4, MKL 11.2 (2015.3.187) and Cuda 7.0 (7.0.28).

2.1.6 Summary

Different methods have been proposed by the recent researches to optimize the SpMV, but it has

been shown that there are no perfect techniques, and that it depends on the architectures and

the matrix shapes. Various performance models have also been proposed to help finding the best

optimization parameters [48; 49]. In most cases, blocking clearly helps the locality, but it also

involves filling with zero, and this can dramatically reduce the efficiency. Writing optimized code

also helps with the use of SIMD intrinsics [50] for example. Reordering the matrix may be crucial

but it can also be too expensive depending on the application; the cost of finding a good ordering

and permuting the matrix must be covered by the gain in the SpMV. Finally, in general the SpMV

hardly achieves 20% of the peak performance on CPU [34] and 5% on GPU [42].
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2.2 Runtime Systems for Parallel Computing

In the field of HPC, a runtime system is in charge of the parallel execution of an application.

A runtime system must provide facilities to split and to pipeline the work but also to use the

hardware efficiently. In our case, we restrict this definition and remove the the thread libraries.

We list here some of the well-known runtime systems: SMPSs [51], StarPU [52], PaRSEC [53],

CnC [54], Quark [55], SuperMatrix [56] and OpenMP. These different runtime systems rely on

several paradigms like the two well-known fork-join or task-based models. In the current study,

we sometime use the term tasks-and-dependencies instead of task-based to explicitly point-out that

we deal with tasks but also with the dependencies between them. We can describe the tasks that

composed an application and their dependencies with a direct acyclic graph (DAG); the tasks are

represented by nodes/vertices and their dependencies by edges. For example, the DAG given by

A → B states that there are two tasks A and B, and that A must be finished to release B. Such a

dependency happens if A modifies a value that will later be used by B or if A read a value that B
will modify.

The tasks-and-dependencies paradigm has been studied by the dense linear algebra commu-

nity [57; 58; 59; 60] and used in new production solvers such as Plasma [61], Magma [62] or

Flame [63]. The robustness and high efficiency of these dense solvers have motivate the study of

more irregular algorithms such as sparse linear solvers [64; 65] and now the fast multipole method.

2.2.1 Expression of the DAG from the Data-Flow

A tasks and dependencies DAG can be defined from a data-flow with implicit dependencies or

a task-flow with explicit dependencies. In the task-flow, the user creates the tasks and manually

expresses the dependencies between them as it is shown by Figure 2.11c for a simple example. This

approach is expensive from the user point of view because he has to manage the dependencies

manually, and the conversion of an existing application implies an expensive development.

On the other hand, in the data-flow approach, the runtime creates and manages the dependen-

cies. The user inserts the tasks sequentially and tells how these ones access the data using the

modes read, read_write and possibly write. Therefore, the runtime guarantees that the parallel ex-

ecution respects this sequential insertion. The generated DAG using this model is always valid

because the dependencies are generated from the sequential insertion, therefore, if a task A is in-

serted before a task B, it cannot generate a reverse dependency B → A. Figure 2.11d shows an

example of a DAG using this model and even if the implementations details are hidden the relation

with the sequential code is straightforward.

2.2.2 Other Data Access Modes

The basic modes, read, write and read_write, specify the data access of the tasks on the data, but

it might be beneficial to provide more information. Therefore, several runtime systems provide

advanced mode to define more accurately the data accesses and the relations between the tasks.

As an example, StarPU proposes the commutative and reduction modes.
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function A(in:d0, in:d1)
function B(in:d0, out:d1)
function C(in:d1)
function D(out:d0)

function Compute(d0,d1)
A(d0, d1);
B(d0, d1);
C(d0, d1);
D(d0);

(a) Sequential Code

..A.

B

.

C

.

D

(b)Corresponding DAG

T_A = create_task(A, d0, d1);
T_B = create_task(B, d0, d1);
add_dependency(T_A to T_B);
T_C = create_task(C, d1);
add_dependency(T_B to T_C);
T_D = create_task(D, d0);
add_dependency(T_B, T_D);

(c) Explicit-dependencies

create_task(A, READ, d0, READ, d1);
create_task(B, READ, d0, WRITE, d1);
create_task(C, READ, d1);
create_task(D, WRITE, d0);

(d) Implicit-dependencies

Figure 2.11: Explicit-dependencies vs. implicit-dependencies.

The commutative mode expresses the fact that some operations can be done in any order (but

not at the same time). This mode might increase the parallelism of an application because many

application have commutative operations, and it is difficult during the creation of the tasks to

estimate in which order the data are going to be available. If a runtime does not support this

mode, it can be replaced by a write where the computational order will be the same as the tasks

insertion. We cannot represent with a DAG the fact that two tasks cannot be computed at the same

time, even so we can add extra symbols to represent this relation.

The commutativemode may constrict the parallelism when the tasks depend on a few number of

data because even if the tasks can be computed in any order, only one thread at a time accesses each

data. Figure 2.12a illustrates this limitation with a simple example. StarPU proposes an additional

access mode called reduction which is similar to the OpenMP reduction keyword in the loop and

section statements. It expresses the fact that a data can be duplicated in order to have multiple

threads that work with the copies and to merge the results into a final value. The reduction example

in Figure 2.12b shows how the creation of a copy of A allows two threads to work concurrently.

However, the reductionmode is expensive because it needs more memory to duplicate the data, and

it also needs some CPU time to merge them into the final values. The real cost is implementation

dependent because a reduction does not necessarily mean that a data is duplicated but that it can be

duplicated if needed. In most algorithms, the commute and reduction modes are interchangeable.

2.2.3 StarPU

StarPU is a runtime system designed to manage heterogeneous architectures and with a implicit

declaration of the dependencies based on a sequential data-flow. It shares several functionalities
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task(commutative(A), Read(B), { A += B });
task(commutative(A), Read(C), { A += C });
task(commutative(A), Read(D), { A += D });
task(commutative(A), Read(E), { A += E });
Execution:
Thread 1 [

{ A += E; }
{ A += C; }
{ A += B; }
{ A += D; }

]

(a) 4 commutative operations

task(Redux(A), Read(B), { A += B });
task(Redux(A), Read(C), { A += C });
task(Redux(A), Read(D), { A += D });
task(Redux(A), Read(E), { A += E });
Execution:
Thread 1 [ Thread 2 [

{ A += B; } { A' = 0; }
{ A += D; } { A' += C; }

] { A' += E; }
{ A += A'; }

]

(b) 4 commutative/redux operations

Figure 2.12: Reduction Data Access Example.

with the OpenMP 4 standard but it also provides additional possibilities such as the customization

of the scheduler. Moreover, in StarPU the main algorithm and the resulting DAG are de-correlate

from the hardware and the different workers. The user creates the tasks without knowing where

they are going to be computed but he gives different functions for the different processing unit

types. Therefore, the choice is made at runtime by the scheduler that decides where a task will be

computed. The scheduler is a critical component to achieve performance. This hardware abstrac-

tion from the algorithm definition is very important in the development of a long-term project.

By looking inside the StarPU implementation, we see that a StarPU scheduler is in charge of the

management of the ready tasks and their assignment to the different workers. The management

of the commutativity (using commute or reduction modes) is done by StarPU which performs early

choices to decide which tasks to give to the scheduler. When several tasks share a commutative

access to a data, only one of them should bemarked as ready and given to the scheduler. Therefore,

this gives to the scheduler a limited view on the existing tasks, and this makes the priority system

secondary aer the StarPU choices. If we insert the tasks A and B that both access the data k in
a commutative mode and with the respective priorities low and high. StarPU has to choose one

of the two tasks to be ready once k is available and gives it to the scheduler. Once the task is in

the scheduler, its priority is taken into account to execute first the higher-priority task, but there

is no guarantee that A will be ready before B. This is why it might be beneficial to replace some

commutative data access by classic read-write to force the execution of some tasks before others

even if it reduces the parallelism. In Appendix D.5 we present a scheduler that we developed to

manage heterogeneous priorities.

StarPU-MPI

StarPU provides different methods to manage the distributed parallelization above distributed

memory, and in this study, we use explicit calls to the StarPU-MPI detached routines starpu-mpi-

send and starpu-mpi-receive. These so-called detached functions are managed like usual tasks in

terms of dependencies: a starpu-mpi-send has a read access on the data and the starpu-mpi-receive a

write access. However, they are not executed like user-level tasks because of the potential delay of

the MPI communications. As an example, if a task calls a mpi_send, it can be extremely long before
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the task finished, not because of the data transfer itself but because the addressee of the message

must invoke mpi_receive to let the message be sent. Moreover, if the communications were inside

normal tasks, we would have several threads calling MPI functions at the same time or calling asyn-

chronous function without asking for a wait. To address this problem, StarPU creates an internal

thread in charge of the MPI calls. When a task is over and relaxes an MPI detached function, the

communication thread is responsible of the call. As a result, the MPI calls are performed as early

as possible without involving any action from the user.

2.3 The Fast Multipole Method (FMM)

2.3.1 N-body Problems and Direct Computation

One refers to the problem of computing the pairwise interactions that N elements have together

as a N-body problem. Such problems appear in a wide range of scientific fields, among which the

most popular ones are astrophysics and molecular dynamics, namely the traditional particle-based

simulations. Indeed, one of the first historical examples of this type of simulation, that is still

studied nowadays, is the computation of gravitational interactions between astrophysical elements

where one computes the interaction that each star/planet has with others and so for each of the N
elements, we compute N− 1 interactions, which leads to a O(N2) complexity. Let us consider for

instance the smooth Laplace kernel used to compute the potentials and accelerations of particles

from their position and mass/charge. The potential is given by

φi =
N−1∑

j=0,j̸=i

mj

rij
. (2.4)

And the accelerations is given by

ai = ∇φi = −
N−1∑

j=0,j̸=i

mjrij
r3ij

. (2.5)

Where the distance between element is

rij =
√

(xi − xj)2 + (yi − yj)2 + (zi − zj)2 + ε . (2.6)

In case ε = 0, we need to ensure that we do not compute the interaction of a particle with it-

self, otherwise ε should be carefully chosen to be negligible. With a time integration, we obtain

the acceleration and displacement and have a complete simulation. Computing the interactions

between all particles is called direct computation, it is usually a compute bound operation (unlike

the SpMV which is memory bound). In fact, in the Laplace example, we need to load 6N floating

point numbers to perform between 20N2 and 40N2 Flop. This high ratio of operation versus data

and the regular access pattern make the direct computation appropriate for GPU or the develop-

ment of special hardware cards such as the GRAPE [66]. However, the quadratic complexity is a
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clear limit to the computation of a problem of millions of unknowns in reasonable time. Various

researches have been made to develop a new algorithm for the n− body problem, for example, the

cut-off method which does not compute the interactions between particles that are further than a

given distance. Such methods might give accurate results when the decay of the kernel is high with

the distance but it may not be accurate enough for kernel like 1/r. Somewhere inbetween the cut-

off methods and the full direct computation there exists hierarchical methods trying to efficiently

approximate the far field while still using the direct computation between close elements.

2.3.2 Hierarchical Methods

In order to process differently the interactions depending on the distance, one needs a data struc-

ture that allows to retrieve this information quickly. One of the first published works about hierar-

chical methods for the n− body problem was introduced in [67] for astrophysics. In this study, the

authors construct a tree with particles at the leaves and internal nodes labeled with the centers of

mass of their descendants. Then, depending on an accuracy parameter, they compute interactions

between particles or between nodes. The underlying data structure is called a k− d tree from [68]

where k is the dimension of the space. Such tree is built by dividing the simulation box - a square

in 2D or a box in 3D that includes all the elements of the problem - by two in each dimension

successively as we add a level to the tree. The original algorithm has a O(NlogN) complexity, but

it was later reduced to a O(N), see [69].
Later the Barnes & Hut method - from the names of the authors - has been proposed in [70].

This method has a O(NlogN) complexity and introduced the octree in 3 dimensions (quadtree in

2 dimensions illustrated in Figure 2.13). Then using the same octree the fast multipole method

(FMM) was proposed in [71] with a O(N) complexity and an accuracy lower bound.

Figure 2.13: Quadtree (k-d tree of dimension 2), the space is divided by two in each dimension and to each division corre-
sponds a cell in the tree.

2.3.3 The Fast Multipole Method (FMM)

The FMM is a hierarchical method for the n− body problem introduced in [71] that has been clas-

sified to be one of the top ten algorithms of the 20th century by the SIAM [72]. In the original

study, the FMMwas presented to solve a 2D particle interaction problem, but it was later extended

to 3D. The FMM succeeds to dissociate the near and far field φ = φnear + φFar, and still uses the
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accurate direct computation for the near field. The original FMM proposal was based on a math-

ematical method to approximate the far field and using an algorithm based on a quadtree/octree

for molecular dynamics or astrophysics. The algorithm is the core part because it is responsible for

the calls to the mathematical functions in a correct order to approximate the interactions between

clusters that represent far particles. When an application is said to be accelerated by the FMM

it means the application uses the FMM algorithm but certainly with another mathematical kernel

that matches the problems as we do for our TD-BEM accelerated by the FMM. The FMM is used to

solve a variety of problems: astrophysical simulations, molecular dynamics, the boundary element

method, radiosity in computer-graphics and dislocation dynamics among others.

The FMM Algorithm

One way to define the FMM algorithm is to consider that it answers the following question: Having

a mathematical method in hands which can aggregate the potential of particles from a box into

a cluster and aggregate two clusters, and which is able to compute the interactions between these

clusters and some particles, how can we reduce the complexity and ensure that all the particles

interact together? In which order should we do the operations? One condition is added to ensure a

minimum accuracy; if a cluster contains the potential of particles included in a box B1 of width D1
and is applied to particles included in a box B2 of width D2 then the distance between B1 and B2
must be greater or equal to Max(D1,D2). Figure 2.14 shows the type of operations that lead to a

lower complexity.

B1 B2

Figure 2.14: The interactions between particles are replaced by interactions using clusters, thus leading toN1 + N2 inter-
actions instead ofN1× N2.

Similar to what has been proposed in the first hierarchical method, in the FMM a tree is con-

structed with the particles in its leaves (possibly several per leaf) and with each node representing

their descendants. The nodes are composed by the multipole and the local parts: the multipoles

represent the covered particles whereas the local part represent some interactions that will be ap-

plied to the covered particles. In the current study, we consider that the FMM root is located at

the top and the leaves at the bottom such that the children of the cells from level l are at the lower
level l + 1. In the first stage of the FMM the information from the particles is aggregated into the

leaves, and this operation is called P2M for particles to multipole. Then the information of the

leaves is aggregated into their parents, and the operation is repeated from leaves up to the level

2 by the M2M operation (multipole to multipole). Aer this upward pass, the nodes contain the

informations of their descendants, and we need to apply them in a way to ensure all particles to

receive the interaction from others. To do so, we compute the interaction list for all the nodes at all

levels. The interaction list for a given cell c at level l is composed by the children of the neighbors
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of c’s parent that are not direct neighbors/adjacent to c. Then for each cell we compute the M2L,
multipole to local, using its interaction list. Aer this transfer pass, all nodes contain the potential

from the particles in a midrange distance. Then the downward pass applies the L2L, local to local,
from level 2 to the leaf level by moving down. The L2P, local to particles, applies the far field to

the particles. The direct interaction, between the leaves, is done at any time by the P2P operator.

All these operations are presented by Figure 2.15.

l = 2

l = 3

l = 2

l = 3

l = 2

l = 3

Transfer Pass/M2L

Direct Pass/P2P

P2M

M2M L2L

L2P

M2L

M2L

P2P

Upward Pass/P2M M2M Downward Pass/L2L L2P

Figure 2.15: Fast multipole method algorithm

In Figure 2.16 we represent for a given cell how it receives the contributions from all the others.

We see that depending on the distance, in space but also in the tree, the interactions happen at

different levels. The same principle is applied to all nodes, which explains why the upward pass

should first aggregate the contributions of the descendant.

M2L at level 2
M2L at level 3
P2P
Target

Figure 2.16: Complete interaction FMM for a given leaf

2.3.4 Space Filling Curves

In the FMM implementations, the way we access the cells in the octree and the way these are stored

is crucial to have low complexity and good performance. In the case of a dense octree, when all

the cells exist, for a dimension D and a tree height h the system is a uniform D-grid of dimension

g = 2h−1 in each direction and it leads to a total of Nl = 2D×(h−1) leaves. One way to store them
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is to use a dense multi-dimensional matrix. In this format, the index of a leaf is obtained from its

tree coordinate index = ((((d1) × g + d2) × g + d3)...+)dD. Figure 2.17a illustrate this indexing
in 2D and Figures 2.17d shows it in 3D where we have index = ((x × g + y) × g + z). As it

has been stated in the FMM algorithm, we need to access the neighbors of the cells: neighbors of

degree 1 in the direct computation P2P and from degree 2 to 3 in theM2L. Therefore, this linear
indexing is not appropriate because close neighbors in space are always far in memory (except

for the last dimension z). So when we access the neighbors of a cell, we may have a lot of cache

misses and a poor data locality. Moreover, in distributed FMM if the cells are divided among the

nodes following their indexes then the number of messages and their size may be extremely high.

Better indexes have been proposed, and it is now common to use space filling curve (SFC) instead

of linear indexing. In [73], they proposed to use the Morton indexing which is a SFC that was

originally invented by Henri-Léon Lebesgue in 2D and then extended in [74]. It is usual to call this

SFC the Z-curve from the pattern it creates in 2D, see Figure 2.17b for the 2D and Figure 2.17e for

the 3D examples. The second more used SFC in the FMM is the Hilbert [75] SFC which is usually

called U− curve. Figure 2.17c and Figure 2.17f show examples of the Hilbert curve in 2D and 3D
respectively.

(a) Linear 2D (b)Morton 2D (c)Hilbert 2D

(d) Linear 3D (e)Morton 3D (f)Hilbert 3D

Figure 2.17: Examples of three space filling curves.

The properties of these two curves have been widely studied, and it has been shown that even if

the Hilbert curve has better properties in theory, in practice both are very similar [76; 77; 78; 79].

Moreover, the Morton index is very easy to compute in both directions compared to the Hilbert

index and it is one of the reasons that make it much more popular. In appendix D.2 and ap-
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pendix D.1, we give the algorithm to compute the Morton index and the Hilbert index respectively.

For Morton, we also give the algorithm to compute the Morton indexes of the interaction list using

a classical method, with the cost of converting back in the tree coordinate system, and using a

bit-based method which is much more efficient, see Appendix D.2.1.

We have created two simple models to study the gain of using SFC compared to the linear

indexing. In our first test, in Figure 2.18, we simulate a distributed memory FMM transfer pass

at the leaf level. We consider that we have a dense octree and that each process has an interval

of the full indexes: the process p is in charge of the leaves inside [p ∗ Nl/np; (p + 1) ∗ Nl/np),
with np the total number of processes and Nl the total number of leaves which remains the same

no matter the underlying index system. Then, we look at the communications by counting the

number of cells each process has to send for a bottom transfer pass in Figure 2.18a. We also

look at the number of processes that are involved in the communication in Figure 2.18b. For the

number of communicating processes, the linear indexing performs well but when we look at the

number of cells each process has to send, the linear indexing is much more expensive. This is easy

to understand because the linear indexing divides the system in layers and even if each process

shares its borders with a few others all its cells are potentially on the borders. On the other hand,

we can see that the Morton and Hilbert indexes are very close.
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Figure 2.18: Space filling curve study for distributed parallelization: the figures show the communication properties when
the tree is equally divided between the n processes.

In our second modeling presented in Figure 2.19, we estimate the number of cache misses when

a single computational element performs the transfer pass at the leaf level. We consider that the

computer uses a cache with a size C and that loading a cell of index i loads all the cell of index

page(i,C) to page(i,C)+Cwith page(i,C) = (i div C)×C. Again, the linear indexing appears clearly
much more expensive once all the leaves do not fit in a single cache page. However, for the Morton

and Hilbert indexes the results are very close, even so, the Hilbert index has slightly fewer caches

misses.
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Figure 2.19: Space filling curve FMMcacheMisses modeling : estimation of cachemisses for different SFC and two cache
sizesC during the bottom transfer pass. We consider that loading a cell load theC others cell that are in the same cache
page.

Morton Indexing Examples

The FMM octree is built on top of a recursive subdivision of the space by two in each dimension:

at each subdivision, the cells are divided into eight new cells in 3D. At a level l the cell grid

dimension is 2l and the total number of cells 2l×D. The linear indexing does the R3 → Rmatching

by concatenating the coordinate of the cell in binary

L(x, y, z, l) = ((x× 2l∗3 + y)× 2l∗3 + z = xl−1...x1x0.yl−1...y1y0.zl−1...z1z0 |b . (2.7)

The formula explains clearly the poor locality of this indexing because increasing the x coordinate
by one increases the resulting index by 2l×3×2. Even so, this indexing has some advantages like its

consistent pattern no matter the dimension of the problem.

The Morton indexing is intrinsically related to the hierarchical structure and the dimension of

the problem. For a given cell c located at level l, the Morton indexing tells in which half of the

subdivisions the cell is located starting from the root until level l. Indicating the correct half costs
one bit and we need this indication for each level and each dimension, which gives us again the

total number of cells 2l×D. Finally, this structure can also be seen as an interleaving of the tree

coordinate of the cells because the space is divided by two and we the use binary representation

M(x, y, z, l) = xl−1yl−1zl−1...x1y1z1.x0y0z0 |b . (2.8)

From this definition, a Morton index of a cell c is first composed by the Morton index of its parent,

since they share the same path from the root, and then by D bits that tells where c is located among

the last subdivision. Moreover, to find a cell in an octree, we need a Morton index and the level

where the seek cell is located because different cells from different levels may have the same index:

for example there is a cell with index 0 at every level. Figure 2.20 shows some Morton indexes in

2D.
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Figure 2.20:Morton index examples in 2D. In order to retrieve a cell from an index the level is needed. The numbersXb are
the binary representation of theMorton indexes. The given example is in 2D and thus the bits are interleaved two by two:
we need one bit to give the correct half in x and another for y.

2.3.5 ScalFMM

ScalFMM is an open-source soware developed at the Inria Bordeaux which is dedicated to the

HPC FMM. It was originally inspired by the FMB library [80]. It gives a particular attention to

the genericity and the parallelization strategies using high level soware engineering. The major

points of ScalFMM is to provide facilities to develop new algorithms and kernels, or to execute an

FMMwith the existing modules. Its development has started before the presented work and is still

ongoing. At the time of writing, ScalFMM is used in various applications: molecular dynamics,

nanoscale physics [81], astrophysics, TD-BEM (current study), BEM and dislocation dynamics [82;

83].

ScalFMM octree data structure. The octree has to cover the simulation box and to include the

particles or any other elements in its leaves. For a given height h, the number of cells in an octree

is 23×(h−1) in 3D such that it becomes impossible to allocate all the cells for a h > 10 in most

machines. In addition, many applications have non uniform particle distributions, and in these

cases, the cells that cover empty areas should not be allocated. Besides the memory occupancy,

it is clear that the empty cells should not be included in the computation. For example, in the

case of surface elements or in astrophysics where there is nothing between galaxies, there is more

empty cells than occupied cells. Therefore, allocating a dense grid is impossible and building the

octree with a link-list between parents and children may be inefficient in memory and will make

the iteration and access to the cells costly.

In between a dense grid and a linked list, the authors in [80] propose a so-called tree by indirec-

tion. This data structure is similar to a virtual memory page table system where an index/address

is composed of several sub-indexes to obtain the real piece of information. The tree is presented

in Figure 2.21 and originally uses Morton index. This tree manages the sparsity of the system by

allocating only parts of the complete octree depending on the existence of elements in the leaves.

The tree by indirection has a parameter which is the height of the sub-octree hs. Choosing a pa-

rameter hs equals to 1 leads to a linked-list octree whereas having hs equal to h is similar to a dense

octree. When elements are inserted in the tree, we first allocate the sub-octrees from the root to
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the host leaf if needed, and then we allocate the cells between the host leaf and the root. Our first

ScalFMM version relies on an implementation of a tree by indirection with Morton index.

Index

Full tree (H=9) Tree by Indirection
(H=9, SH=4)

Figure 2.21: Tree by indirection. The index is composed of sub indexes to access the sub-trees.

ScalFMM kernels. ScalFMM comes with three kernels for the 1/r problems: Spherical Harmon-

ics, Spherical Harmonics accelerated by rotations and Taylor expansions. It also provides new

generation kernels that may be referred as black box kernels which are based on the Chebyshev or

Lagrange polynomials [84; 85]. Each kernel has its own cell (Multipole/Local) but they can all be

used with the different ScalFMM parallelization strategies. They have been developed by different

researchers which in a way shows the advantages of ScalFMM.

Parallelization strategies. ScalFMMcomeswith several parallelized FMMalgorithms usingOpen-

MP on shared memory and hybrid MPI/OpenMP on distributed memory. On shared memory

ScalFMM supports different paradigms: fork-join for, tasks-and-wait and section tasks-and-wait.

Over the distributed memory, an extension of the hybrid MPI/OpenMP has been developed for

the periodic case.

The MPI/OpenMP implementation has been developed before the current presented work but

has been later improved and is presented in Section 4.3. The same has been done for the StarPU

based version for which a dra was made earlier but rewritten and extended to distributed memory

as presented in Section 4.4.

2.3.6 Other Parallel FMM

We state in previous sections that the FMM algorithm applies to various fields, and as result we cite

only few of the numerous proficient implementations. The first parallel FMM applications were

developed more than 20 years ago. In [73], the authors show result up-to 512 processors with an

octree based on a hash-table. This study had proposed several schemes that are still used in mod-

ern parallel FMM as the indexing of the cells with Morton SFC. More recently, in [86], the authors

describe a kernel independent FMM and are able to solve problem of 2.1 billion unknowns in a vis-

cous flow simulation. Their application is parallelized with MPI and they show nice results thanks
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to the dissociation of communications and computations. However, their Flop-rate and parallel

efficiency are not as good as the latest researches.In [87], the authors describe a GPU based FMM

for astrophysics and turbulence simulations. They prepare the data on the CPU and perform the

computation on the GPU with an adapted data structure and by grouping the leaves that contain

a small number of particles. In [88] the authors compare several FMM implementations for mul-

ticore and heterogeneous architectures. They show that the multicore implementations were still

competitive if implemented carefully, but the GPUs have been improved a lot since. The authors

from [89] provide a detailed study of the FMM on heterogeneous architectures. They describe

the complete FMM steps from tree construction to computation and use up-to 30 nodes with 60
GPUs. Moreover, they give fine details about the theoretical and experimental cost of the different

operations. In [90], they propose a pure accelerator-based FMM implementation and describe effi-

cient CUDA kernels. The authors describe how the FMM operators can be efficiently implemented

on GPUs. Large scale FMM has been proposed in [91] over 65K cores but also using CPU/GPU

nodes. Lately, in [92], the authors introduced the PVFMM library which is an open-source FMM

package ables to scale on thousands nodes and using accelerators (GPU or Xeon Phi). However,

they do not rely on a runtime system and compute only the P2P on accelerators which will limit the

efficiency on non-optimal cases or for certain architectures. One of the earliest implementations

of the FMM over a runtime system has been proposed in [93] for multicore architectures where

the authors show a linear speedup up-to 16 cores.

2.4 Other TD-BEM Formulations for the Wave Equation

There are concurrent implementations and studies on TD-BEM solvers. In [94], the authors have

implemented a TD-BEM application, and their formulation is similar to the one we use. They

show results up to 48 CPUs and rely on the sparse matrix-vector product without giving details on

the performance, and they do not provide up-to-date results in recent studies. In [95], the author

uses either multi-GPUs or multi-CPUs parallelization and accelerates the TD-BEM by splitting near

field and far field. The study shows an improvement of the GPUs against the CPUs and focuses on

the formulation of the near/far computation. In [96], the authors give an overview of an acceler-

ated TD-BEM for the wave equation by using the FMM. They argue to reduce the complexity to

O(N1+δ
S + NT) (where δ = 1/3 or 1/2). However, their study does not focus on performance, but

rather on a new formulation and its numerical study, which makes it difficult to compare to ours in

terms of performance. The study from [97] presents a TD-BEM for the heat equation accelerated

by the FMM with comprehensive details. Their kernel relies on the Chebyshev polynomial and

they reduce the complexity from O(N2M2) to O(p4q2NM), where M is the number of time steps,

N is the number of degrees of freedom p and q are the orders of the polynomial approximation in

space and time.
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2.5 Contributions

In the current thesis, we do not work on the TD-BEM formulation but rather on its efficient im-

plementation and parallelization on modern HPC architectures. Moreover, we delegate to some

black-boxes the construction of the NNZ values of the interaction matrices and the factorization of

M0, and we concentrate our work on the solution algorithm. The discretization of the mesh and the

building of the input matrices are done by the original industrial application, and the solve of the

linear system M0 using a state-of-the-art library. The physical problems we simulate are based on

rigid meshes (constant in time) and therefore, all the interaction matrices and the pre-computations

needed by the linear solver - which includes analysis and factorization - are performed once at the

beginning. Our contributions can be divided into three parts: the implementation of a parallel

and efficient TD-BEM solver, the work on the parallelization of the general FMM algorithm and

an attempt on the acceleration of the TD-BEM using the FMM.

From the original linear expression, we try to develop an efficient SpMV operator on CPU and

GPU. On CPU, this work includes the permutation of the interaction matrices and the development

of an unaligned block storage/kernel with SIMD instructions. On GPU, we define a new sparse

matrix storage which is adapted to multi-streaming (or many-threads) processors. However, these

kernels are still limited by the memory transfer and suffer of the zero padding. That is why, we

propose to bypass the low performance of the SpMV by reordering the computation order and

by using a custom multi-vectors/vector product. This part of the work is not an optimization or

an improvement of the general SpMV because we use a custom operator who matches our needs

and which is between the SpMV and the dense general matrix-matrix multiplication (GEMM).

Nevertheless, the optimizations of our implementation have been inspired by the historical work

on SpMV and some of our results are applicable to the SpMV. The interaction matrices have

a sparsity pattern which is difficult to transform into dense blocks, but when we access to the

NNZ values from a different manner we obtain matrices that have one dense vector per row.

We study at different levels how this multi-vectors/vector product can be implemented on CPU

and GPU to achieve high-performance. For the CPU, we develop a complex kernel which uses

SIMD instructions and data re-use. The past researches of the SpMV on GPU show that data-

blocking is mandatory to increase the Flop-rate. Therefore, we create two blocking schemes and

their respective GPU kernels and study their efficiency and zero padding. The development of

this complete matrix based solver includes efficient parallelization strategies over heterogeneous

distributed nodes and a load balancing heuristic.

In our approach, we consider the FMM algorithm as a generic technique which is independent

of the target application. We study the parallelization of the FMM using several paradigms in

both shared and distributed memory. Starting from a sequential description, we explain how the

FMM can be parallelized by classic fork-join methods and we incrementally move to a pure task-

based FMM with the support of a runtime system. The tasks-and-dependencies expression of the

FMM relaxes all the parallelism but the overhead of the runtime system in the management of

the tasks/dependencies must be taken in account. That is why, we propose a new data structure
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called group-tree to easily parametrize the granularity of the tasks and to target accelerators. We

describe hybrid parallelization schemes using the classical pair MPI/OpenMP but also a task-based

distributed FMM over StarPU-MPI. All these algorithms are included in the ScalFMM open-source

library and available to the community.

The total execution time of a TD-BEM simulation is the summation of the times taken to gener-

ate the interaction matrices and the time to solve the linear system. We do not have the hand on

the generation of the matrices but it is a costly step that can be even more expensive than the solve.

Therefore, to avoid the generation of all the interaction matrices, it appears interesting to replace

the accurate interactions based on these matrices by an approximation for the unknowns that are

far from each other. This separation of the near and far fields can be done with the FMM and

we implement the FMM kernel proposed in [3] for our TD-BEM. As a result, we have to generate

the interaction matrices only between the leaves of the FMM tree which reduces drastically the

complexity of this stage. However, the FMM solve seems expensive and complex to implement.

Our kernel has been developed over the ScalFMM library which allows us to use its numerous

parallelization strategies. Finally, we study some of the high level optimizations and provide pre-

liminarily results, which call for numerous perspectives.
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3
TD-BEM Matrix Approach

In this chapter, we describe the work around the direct/matrix computation to solve the TD-BEM.

While the original linear system is expressed with SpMV, we have first worked on this standard

operation and tried to optimize it. Then we have used another computational order and developed

a new optimized kernel on CPU and GPU. This new order has lead to a new parallelization that

we study experimentally on an airplane simulation.

3.1 An Attempt on the Optimization of the SpMV

The summation stage is the costly part and is naturally computed with SpMV when presented as

in Equation 1.3, and thus our first work has been an attempt to increase the performance of this

operator. In the background Section 2.1 we describe the state-of-the-art of SpMV and explain how

difficult it is to achieve performance.

3.1.1 Matrix Shapes and Unknowns Ordering

In Section 1.2.2, we explain how the convolution matrices are generated and we point out the

fact that there is a relation between the NNZ positions in the matrices, the spatial positions of

the unknowns and the problem properties (time step, wavelength, etc.). If two unknowns are

close in space, they will certainly impact others at the same time steps, which makes the matrices

having two contiguous values in a row, and vice-versa which makes two contiguous values in a

column. Therefore, to change the shape of the matrix, we need to perform some permutation of

the rows/columns which means that we need to take the unknowns in a certain order. Attempting

to improve the shape of a general matrix without knowing where its pattern comes from limits the

possibilities, whereas here, we can take into account our knowledge of the matrices construction.

The objective is then to improve the quality of the SpMV by padding with less zero, and having a

better memory access pattern as stated in Section 2.1.2.
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3.1.2 Reordering

In our current study, we describe two approaches that we used to improve the matrix quality; using

the common elements graph (TSP) and using the Morton indexing.

Ordering based on Morton Space Filling Curve

In Section 3.1.1, we describe the relation between the ordering of the unknowns and the position

of the NNZ in the matrices. Since we work on 3D mesh, one way to obtain a numbering of the

unknowns is to use the space-filling curves (SFC) presented in 2.3.4. We compute the Morton

index for each unknown by considering that a spatial box is over our mesh and with a high degree

to guarantee that each Morton index covers very few unknown. Then, we sort the columns/rows

using the Morton indexes and obtained a permuted matrix. This technique is easy to implement,

and it gives a global ordering that can be used for all the convolution matrices, which means that

from one SpMV to another, we do not have to permute the vectors. However, this technique is

not matrix− oriented and does not take into account the NNZ of the matrices, but we expect it to

improve their quality from the matrix definition.

Common Elements Graph (TSP)

In Section 2.1.2, we introduce the TSP approach to permute a matrix that has been used in past

research on the SpMV. We remind that the idea is to build a graph which expresses the interest

of putting two rows/columns contiguously. The weights of the edges and the resulting score of

the path that goes through all the nodes are based on the number of values in common between

rows/columns: the number of common NNZ for two columns is the number of rows both columns

have NNZ on. In Algorithm 1, we give a possible approach to build rapidly the table of elements

in common between the columns of a matrix. Its complexity is O(NNZ2/dim) and thus it is usually
much faster than comparing all columns pair by pair, which leads to a complexity of O(dim2 ×
2NNZ/dim). From the CSR storage, the algorithm iterates on each row and performs a double

loops over the columns indexes to increase the common element table. Once we have the table of

common elements, we can compute the score between columns. We have tested the three formulas

presented in Section 2.1.2 (results are not shown in the present study) and obtained our best results

with the score that we call Divamax given by

d(i, j) =
common(i, j)
Max(ni, nj)

. (3.1)

We finally end up with a score table which tell us the cost of an edge in the graph for putting two

columns contiguously.

Once the graph is built, we have to find the shortest path that goes on each node only once

(TSP). This problem is NP-Hard, and it is impossible to guarantee the optimal solution for realistic

problem size. One solution to get a path is to generate one using a greedy heuristic. It is also

possible to improve an existing path using k-opt improvement method, but these approaches are
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Algorithm 1: Finding the elements in common between columns. This algorithm has a time
complexity of O(NNZ2/dim) and a spatial complexity O(dim2). From the output table, one
should compute the final graph distance using for example Divamax.
Data:
function FindElementInCommon(integer csrRowCount[dim+1], integer csrColIdxs[NNZ],
dim, NNZ)
: Graph graph(dim, dim)

Array elementsInCommon(dim, dim);
for idxRow = 0→ dim-1 do

for idxCol = csrRowCount[idxRow]→ csrRowCount[idxRow+1]-1 do
for idxColCommon = idxCol+1→ csrRowCount[idxRow+1]-1 do

elementsInCommon(csrColIdxs[idxCol], csrColIdxs[idxColCommon]) += 1;
end

end
end
// elementsInCommon contains the number of elements in common between columns
// And we can then compute the score in O(n2)

expensive. Moreover, to study the SpMV we can use an expensive algorithm, but in a real solver

the cost of the ordering, and thus the generation of the path, should be amortized by the gain in

performance during the SpMV and so it cannot be too costly. A trivial greedy approach is to start

from the closest nodes and then iterate by adding the next closest node to the path. We called this

algorithm the max− score heuristic, and it has a O(N2) complexity. We developed a new heuristic

based on this max− score that we called max− block− score which tries to take into account the fact
that we will block the matrix aer the permutation. So a column should be added to a path not

only if it has a good score with the latest node but also with the c−1 latest nodes (with c the number

of columns in a block). This method, shown in Algorithm 2, has a complexity of O((c−1)N2), and

it is an adaptation of the max− score but should better match our objective. In this algorithm, we

start by selecting the two nodes with the best scores which constitutes the initial path in the graph.

Then, we look at the nodes that have not been inserted yet and add the best candidate in the le

or the right extremities of the path. The algorithm stops once all the nodes have been proceed.

A more advanced heuristic has been tested by also taking into account the number of rows in a

block r but it did not give any improvement compared to the presented methods.

Experimental Quality Measure

We see the effect of a permutation by looking at the matrix shapes but also in our case by analyzing

our mesh. That is why we present in Figure 3.1 the airplane test caseM0, describe in Section 1.2.4,

for different permutations and in Figure 3.2 the same information but on the airplane mesh. This

breaks the usual rule where we study a sparse matrix without taking into account its origin and

the problem domain. In the matrix view, clearly there is an improvement when reordering with

max− block− score, Figure 3.1b or with Morton, Figure 3.1d. In the airplane mesh, we see that the

max − block − score orders the unknowns that are spatially close, even so, it is independent from

the mesh and has been applied on the matrix. It creates a kind of path on the mesh whereas the

Morton method achieves this locality by the spatial recursive subdivision. Finally, when we apply
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Algorithm 2:Greedy initial path construction - max− block− score - for the TSP problem. If the
BlockSize variable is set to one, the algorithm turns to select the best candidate at each round
like the max− score. The terms left and right illustrate the fact that we aggregate columns.
Data:
function GetGoodPath(Table scores(dim,dim), dim) : path[dim]

path = ;
// Get a first pair, like the best score in table for example
[i:i’] = getBestScore(scores);
// It is the starting point of the path
path = {i, i’};
// Iterate on remaining columns
for FuncStyidxScore = 2 → dim-1 do

[bestLeScore, bestLeNode] = inf , ;
[bestRightScore, bestRightNode] = inf, ;
forall the node ̸∈ path do

leScore = getScore(scores, path, le_dir, node);
if leScore is better than bestLeScore then

[bestLeScore, bestLeNode] = {bestScore, node};
end
righttScore = getScore(scores, path, right_dir, node);
if righttScore is better than bestRightScore then

[bestRightScore, bestRightNode] = {righttScore, node};
end

end
if bestLeScore is better than bestRightScore then

path = {bestLeNode, path};
else

path = {path, bestRightNode};
end

end
function getScore(Table scores, Path path, Direction direction, Node node) : score

depth = Min(length(path), BlockSize);
total = 0;
for idxDepth = 0→ depth-1 do

total += getScore(scores, getNthNode(path, direction, idxDepth), node);
end
return total;

the 2-OPT heuristic to the max− block− score, we see that the path creates larger areas.

(a)Original (mesh generation) (b)max− block− score (c)max− block− score+ 2Opt (d)Morton

Figure 3.1:Matrix view of the AirplaneM0 ordering. The black represents the NNZ or block of NNZ.

The past studies of the SpMV have shown that blocking is crucial, see Section 2.1. Therefore,

the objective of our permutations is to improve the quality of the matrices for an unaligned block
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(a)Original (mesh generation) (b)max− block− score

(c)max− block− score+ 2Opt (d)Morton

Figure 3.2:Mesh view of the AirplaneM0 ordering. The path goes from red to blue: the resultingmatrix is composed of the
unknowns in red to the unknowns in blue.

storage; using an unaligned scheme reduces the zero padding in the blocks. Thus the best way

to measure the quality is to count the number of unaligned blocks obtained from a permuted

matrix. This is independent of the computational time, but we expect the computation time to

be proportional to that number of blocks. Moreover, the higher the number of blocks the more

important is the zero padding. We give in Table 3.1 the number of blocks we obtain for a small

test case and in Table 3.2 for the airplane test case. We see that applying the 2 − OPT method

gives an improvement in most of the cases, and for all the initial path but the number of blocks

are just a slightly better compared to the greedy heuristics. For example, the max − block − score
approach is very efficient and only a few percent far from the best 2-OPT. In addition, it happens

that we have more blocks once the 2-OPT has been applied like with the matrixM69 in Table 3.1,

this is because while the path has been improved in terms of raw score, the generated matrix is

finally not better. The generation of the unaligned blocks is done using the algorithm presented in

Algorithm 3. However, here we show the ordering for four matrices as an illustration, but from

our equation, we need to perform and SpMV for all matrices Mp>0 which makes the thing more

complicated.
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max− score max− block Random Default Morton
Mk (NNZ) Path 2OPT Path 2OPT Path 2OPT Path 2OPT
M0 (18713) 2828 2735 2686 2611 13661 2710 3406 2781 2965

M23 (262172) 30904 30284 27196 27768 55272 27512 32678 30002 25826
M46 (60454) 4334 4364 4316 4412 26050 4722 4524 4338 5870
M69 (1014) 78 80 78 80 856 78 84 78 182

Table 3.1: Ordering quality forDivamax score and the cone-sphere C-927 test case introduced in Section 1.2.4. The table give
the number of 4 × 4 blocks obtained from the unaligned conversion. For the graph based ordering, we give the number of
blocks with andwithout 2OPT improvement.

max− score max− block Random Default Morton
Mk (NNZ) Path 2OPT Path 2OPT Path 2OPT Path 2OPT

M0 (482078) 73806 69402 71912 69336 449067 69633 168279 69766 87898
M3 (1570024) 185681 182121 181953 180194 1450148 182392 420448 181344 200594
M6 (3256916) 347663 341925 337054 339817 2899655 343028 743984 342823 357188
M9 (5207506) 540850 536092 525602 530406 4433638 537180 1103862 535184 555616

Table 3.2: Ordering quality forDivamax score and the airplane test case. The table give the number of 4 × 4 blocks obtained
from the unaligned conversion. For the graph based ordering, we give the number of blocks with andwithout 2OPT im-
provement.

3.1.3 Reordering a Group of Matrices

From Equation 1.3, we perform several SpMVs with the past states of the unknowns at each time

step. If we try to find the best permutation for each matrix individualy/separately, we have to

permute the past vectors to ensure coherency. To avoid permutating the vectors, we need to find

a unique ordering for all the matrices, which is the case when using Morton indexing for example.

The matrix M0, in particular, represents the close interactions, and if we look at Mp<Kmax
, with

0 << p two columns will have a lot of elements in common if their respective unknowns are equally

far from a important number of unknowns. But we can also expect this propriety to be true also

for unknowns that are close because they illuminate the same unknowns and are illuminated by

the same unknowns in return. That is why, we compare three quality of ordering variant: ordering

each matrix individually (1to1), using the ordering from M0 as a global ordering (1toall), using the
ordering from x first matrices to generate a global ordering (xtoall). The Morton ordering is valid

for all the matrices as a global ordering because it is based on mesh. With the xtoall, we cumulate

the scores from the first x matrices before getting the ordering, because if we look at the common

interactions for several time steps it should improve the future common interactions.

The Utopian number of blocks in a matrix is given per LB = (NNZ+ r× c− 1)/(r× c), while
this number is certainly impossible to get, it gives a useful information to tell us how much zero

padding we have. In Figure 3.3a and Figure 3.3b, for a cone-sphere test case and the airplane test

case respectively, we look at the number of blocks we obtain for all the matrices fromM0 toMKmax
.

In these figures, the minimal number of blocks possible LB is called lower − bound. As expected,
when ordering each matrix separately we obtain the best results, but it has more than 30% zero

padding and moreover, it would require to permute the vectors between the SpMVs and it is very

expensive to generate all the orderings. The other methods are very close and lead to up to 50% of

zero padding. It means that no matter how efficient is the SpMV used to compute these matrices,
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it will waste 50% of the time computing with zeros. In results not shown here, we have also tested

to keep ordering for a group of consecutive matrices, but it is difficult to tune such an approach.
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Figure 3.3: Number of unaligned blocks for all thematrices of two test cases and for different ordering strategies.

3.1.4 SpMV Implementations

3.1.5 Unaligned Block Coordinate Storage (UBCOO)

Once a matrix has been reordered, we propose a method, written in Algorithm 3, to quickly ex-

tract the unaligned blocks of static size r × c. The algorithm generates the blocks in two similar

passes with the first one needed to estimate the number of blocks before allocating them all. The

memory is allocated in one shot and the second phase fills the block with the NNZ values. The

time complexity is O(NNZ× c) and the space complexity O(dim). We did not find a counterexam-

ple where the number of generated block is not optimal but we have not any proof that ensure the

optimality. The optimal number of blocks is the minimum number of blocks to cover all the NNZ

with potentially some zero padding (which is different from the lower bound).

3.1.6 CPU Implementation of UBCOO SpMV

We describe in Appendix C.1 the key-points when developing an efficient kernel on CPU. We have

implemented a SpMV kernel for our UBCOO storage with different levels of optimization. The

basic version is developed in standard C with no special optimization except the ones from the

compiler. We improve this version using AVX intrinsics in C (C − AVX) and then convert it to

45



Algorithm 3: Conversion from the coordinate storage (COO) to the unaligned block storage
(UBCOO). The source storage can be changed to CSR storagewithoutmodifying the algorithm.
The time complexity is O(NNZ× blockSize) and the space complexity O(dim).
Data: Source NNZ should be accessed row by row
function CooToUBcsr(Coo cooValues[nbNnz], nbNnz, dim, blockSize)
: bcsrValues[nbBlocks× blockSize2], bcsrIndexes[2nbBlocks]

integer rowMax[dim+blockSize-1] = -blockSize;
integer nbBlocsk = 0;
// First compute the number of blocks
forall the NNZ value ∈ cooValues do

if (value.i - rowMax[value.j]) >= blockSize then
for idxCover = 0→ blockSize-1 do

rowMax[value.j+idxCover] = value.i;
end
nbBlocsk += 1;

end
end
// Allocate the arrays
value− type bcsrValues[nbBlocks× blockSize2] = 0;
integer bcsrIndexes[2nbBlocks] = 0;
// Reset the working buffer
rowMax[dim+blockSize-1] = -1;
// Fill them
integer idxBlock = 0;
forall the NNZ value ∈ cooValues do

integer currentBlock; if rowMax[value.j] == -1 OR (value.i - bcsrIndexes[rowMax[value.j]*2]) >= blockSize
then

// Start a new block
bcsrIndexes[idxBlock*2] = value.i;
bcsrIndexes[idxBlock*2+1] = value.j;
for idxCover = 0→ blockSize-1 do

rowMax[value.j+idxCover] = idxBlock;
end
currentBlock = idxBlock;
idxBlock += 1;

end
else

// Retrieve the block that cover the NNZ
currentBlock = rowMax[value.j];

end
// Save the NNZ value
integer rowOffset = value.i - bcsrIndexes[rowMax[value.j]*2];
integer colOffset = value.j - bcsrIndexes[rowMax[value.j]*2+1];
bcsrValues[currentBlock*blockSize*blockSize + colOffset*blockSize + rowOffset] = value.v;

end
// Here idxBlock == nbBlocks

hand-written assembly (ASM − AVX). These functions are presented in the appendix as code

examples, see Section C.2 for the C-AVX and Section C.3 for the ASM-AVX. For these three dif-

ferent implementations, the block dimension is known at compile time. Of course, it is possible to

compile several kernels for different block dimensions and choose the appropriate one at runtime.

The performance results are shown in Figure 3.4 and we see that both AVX versions have similar

performance. The pure C and the BCSRMKL versions are clearly not efficient. By looking more in
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details details, we see that our AVX kernels have good instruction pipelining and that they use the

registers correctly because they show good performance when computing the small dense matrix

several times (which creates a memory reuse). However, even if the airplaneM0 matrix is showing

good Flop-rate, the effective performance is quite low due to the zero padding.

.....
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Figure 3.4: Results for the SpMVUBCOO 8 × 8 for different matrices: dense, diagonal, random blocks and several times
the same small dense andM0. The code is executed in sequential on a Haswell Intel Xeon E5-2680 2, 50GHzwith theoreti-
cal peaks of 20GFlop/s in single precision and 10GFlop/s in double precision. It has been compiled with Gcc 4.8.4 andMKL
11.2 (2015.3.187). TheNNZ Flop-rate is obtain by not counting the zeros, and theEffective is the real number of opera-
tions that have been performed.

The ratio of effective/real Flop-rates is even worse for the MKL because it relies on aligned

blocks. The number of aligned blocks needed to cover the NNZ of a matrix can be much higher

compared to an unaligned scheme. For the airplane M0 we obtain 35074 unaligned blocks of

dimension 8 × 8 while the MKL uses 36158 aligned blocks of the same dimension. Finally, the

MKL routine mkl_dcsrbsr used to convert the matrix into the the BCSR storage has been shown to

be 2 to 10 times slower than our conversion routine, even so the construction of unaligned blocks

should the more expensive. We can imagine that the MKL conversion routine is not using extra

memory and is not allocating in one operation. But for both the computational kernel and the

block conversion, it is difficult to understand this performance difference since the documentation

is minimal and the source not available.

3.1.7 GPU Implementation of CBZ SpMV

We describe in Appendix C.4 the key-points when developing efficient kernel on CPU. We have

extended our study with an attempt on NVidia GPU. We have implemented a GPU dedicated

storage called Column Block Zone (CBZ) presented in Figure 3.5. The properties of the blocks
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that are generated in the CBZ are based on the target GPU configurations: we need to know the

maximum number of threads a group can have and the maximum shared memory per group. The

maximum number of threads must take into account the GPU limit, and the number of registers

used by our kernel against the number of registers for an entire group. From Figure 3.5, we see

that we first divide the matrix by giving the same number of rows to each thread group. Then

we create several blocks to cover all the columns: a block includes all the NNZ inside a column’s

interval that matches the size of the shared memory. Finally, the values from a block are stored in

row major, and we use zero padding to ensure that all threads have the same number of values.

This storage is not appropriate to CPU because of the zero padding, however, it may have some

benefit of the data locality of the blocks.

Thread 
Group 0

Thread 
Group 1

Thread 
Group 2

Shared vector 
maximum length
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Figure 3.5: CBZ Storage for the GPU. Thematrix is converted into block of dimensionmaximum threads per group×max-
imum sharedmemory per group. The NNZ are then stored in rowmajor with zero padding to have the same number of
values in each rows.

From the experimental results shown in 3.6 our kernel seems competitive against the CUDA

cuSparse CSR. Even so, it is not appropriate when there is no large dense NNZ parts in the matri-

ces, like for example in the block random (because the matrix dimension is large) and the airplane

M0.

3.1.8 SpMV Usage Summary

We have developed efficient algorithms to reorder the matrices based on the Divamax score or the

Morton index and to generate unaligned blocks. These different stages of matrix preprocessing

are expensive, and they are usable in a real application only if the SpMV is clearly taking advantage

of them. Nevertheless, in our case, our optimized kernels while efficient in terms of raw Flop-rate

are suffering of the zero padding. The final results are not sufficient and therefore the SpMV is

certainly not the appropriate tool to improve our solver performance.
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Figure 3.6: Example of CBZ SpMV onGPU different matrices: dense, diagonal, random, random blocks of dimension 8x8
and AirplaneM0. The format is p/Nwhere p is the percentage of NNZ andN the dimension of thematrix. The code is exe-
cuted on a GPU (K40-M) with 1.43TFlop/s of peak performance. It has been compiled with Gcc 4.8.4 and Cuda 7.0 (7.0.28).
Our CBZ kernel is performing 19GFlop/s for the AirplaneM0 but the real Flop-rate is much lower.

3.2 Reordering the Summation Computation

3.2.1 Ordering Possibilities

A natural implementation of the summation stage is to perform Kmax independent SpMVs using

three nested loops. The first loop is controlled by index k in our formulation; it is over the inter-

action matrices, and it goes from 1 to Kmax. The second and third loops are over the rows and

the columns of the matrices and are indexed by i and j respectively. The indexes i and j cover
the unknowns and go from 1 to N. The complete equation is written in Equation (3.2) where all

indexes n, k, i and j are visible.

sn(i) =
Kmax∑
k=1

N∑
j=1

Mk(i, j)× an−k(j) , 1 ≤ i ≤ N . (3.2)

In terms of algorithm, it is not mandatory to keep the outer loop on index k and two other orders
of summation are possible using i or j. The three possibilities are represented in Figure 3.7 where

all interaction matricesMk are shown one behind another and represented as a 3D block. This fig-

ure illustrates the three different ways to access the interaction matrices according to the outer loop

index. The natural approach using k is called by front and usually relies on SpMV (Figure 3.7a).

We decide to use the approach called by slice using j as the outer loop index (Figure 3.7c) because

the resulting matrices have a particular structure which is appropriate for optimizations.
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Figure 3.7: Three ways to reorder the computation of sn with current time step n = 6, number of unknownsN = 8 and
Kmax = 6. (a) The outer loop is in the differentMk matrices. (b) The outer loop is over the row index ofMk and sn. (c) The
outer loop is over the column index ofMk.

3.2.2 Slice Properties

We denote by slice the data when the outer loop index of the summation is j in Equation (3.2). A

Slicej is composed by the concatenation of each column j of the interaction matrices

[M1(∗, j)M2(∗, j) ...MKmax
(∗, j)] as illustrated in Figure 3.7c. This definition induced the relation

Mk(i, j) = Slicej(i, k) and thus a slice is a sparse matrix of dimension (N×Kmax). It has a non-zero

value at line i and column k if d(i, j) ≈ k · c · Δt, where d(i, j) is the distance between the unknowns

i and j. While an interaction matrix Mk represents the interaction between the unknowns for a

given time/distance with coefficient k, a Slicej represents the interaction that one unknown j has
with all others over the time. This provides the main property of the sparse structure of a slice: the

non-zero values are contiguous on each line. As illustrated by Figure 1.4, it takes several iterations

for the wave emitted by an unknown to cross over another. In other words, for a given row i and
column j all the interaction matricesMk that have a non-zero value at this position are consecutive

according to index k. In the slice format, it means that each slice has one vector of NNZ per line,

but each of this vector may start at a different column k which correspond to the delay between

the emission and the reception of a wave *. If it takes p time steps for the wave from j to cross over
i, then Slicej(i, k) = Mk(i, j) ̸= 0 for ks ≤ k ≤ ks + p where ks = d(i, j)/(cΔt). We refer to these

dense vectors in each row of a slice as the row-vectors. Using the interaction matrices, we multiply

a matrixMk by the values of the unknown at time n− k (i.e. an−k(∗)) to obtain sn. By working with
slices, we multiply each Slicej by the past value of the unknown j (i.e. a∗<n(j)). An example of a

slice is presented in Figure 3.8.

When computing the summation vector sn, we can perform one scalar product per row-vector.

Then, sn can be obtained with N × N scalar products (there are N slices and N rows per slice)

instead of Kmax SpMVs.

*Thismight not be truewith some specific features such as different propagationmedia, a ground plane, symmetries
or periodicity. In most of those cases, there more than one NNZ vector per line but the presented study is still valid.
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Figure 3.8: An example of Slicewhere the non-zero values are symbolized by gray squares and the zero values by white
squares. The vector a∗<n(j) contains the past values of the unknown j. The vector sn will contain the current result of the
summation stage for t = n.

3.2.3 Slice Computational Algorithm with Multiple Steps

The scalar product is a level 1 BLAS, and it has a low ratio of Flop against loaded data. In fact, one

needs to load one value from both vectors to perform one multiplication and one addition. More

precisely, by calling d the dimension of the vector, we need to load 2d + 1 values to perform 2d
Flops. Figure 3.9a shows how we compute a slice using one scalar product per row. We propose

two optimizations to increase this ratio.

The first optimization is to work with multiple summation vectors at a time. At time step n,
we compute the current time step summation vector sn and the next step summation vector sn+1

together. When computing a summation vector, we use the slice matrices which remain constant

and the past values of the unknowns relatively to the target vector time step. The vector sn requires
the past values ap, with n − Kmax ≤ p < n, whereas the vector sn+1 needs the past values ap′ with
n−Kmax + 1 ≤ p′ < n+ 1. In other words, sn+1 needs most of the values that are used to compute

sn but it also needs the current state an which has not been computed yet. If we replace an by zero,
we are able to compute sn and a part of sn+1 together but sn+1 is incomplete. By doing so, we

perform a matrix-vector product instead of a scalar product. The vectors are the non-zero row-

vectors of the slices, and the matrices are the past values which match the summation vectors s. We

denote by ng the number of summation vectors that are grouped together and Figure 3.9b shows

the different computation possibilities with ng = 3. Once the summation is done, if ng = 2, we end
up with sn and sn+1 and we continue the usual algorithm for sn to obtain an aer the resolution step
(Equation (1.5)). Then, this result an is projected to sn+1, using a single SpMV andM1, and allows

us to obtain the complete summation vector sn+1. We refer to this projection as the radiation stage.

It is possible to have ng greater than 2, but the higher ng, the more important the radiation stage.

In this configuration, we load d+ ng + d× ng data to perform ng × 2d Flops.
The second optimization takes into account the properties of the past values. When working

with the Slicej, we need the past values of the unknown j: sn needs an−Kmax≤p<n(j) and sn+1 needs

an−Kmax+1≤p′<n+1(j). The vector an−Kmax+1≤p′<n+1(j) is equal to the vector an−Kmax≤p<n(j) where all

values are shied by one position, and with the first value equals to an(j) (or zero if this value does
not exist at that time). In order to increase the data reuse, we consider only one past value vector for

the ng summations involved in the process. We take the existing values an−Kmax≤p<n(j) and append

one zero to each ng > 1 as it is shown in Figure 3.9c. In this case, we load d + ng + (d + ng − 1)
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data to perform ng × 2d Flops. This operator is called multi-vectors/vector product and is detailed

in Figure 3.10.
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Figure 3.9: Summation stage with Slicej and 3 possibilities. (a)With ng = 1 using scalar product. (b)With ng = 3 using
matrix/vector product (X and Y are the values of a, not yet available and replaced by zero). (c)With ng = 3 using themulti-
vectors/vector product.

The computation of the multi-vectors/vector product can be done in many ways where the more

naive implementation is to perform a scalar product for each of the ng results. With a such ap-

proach, we delegate the data reuse to the hardware cache hoping that, since all the scalar products

involved use almost the same values, the performance will increase. However, it is also possible

to implement this operator with more advanced algorithms as shown in Section 3.3.
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Figure 3.10: Computing one slice-rowwith 3 vectors (ng = 3): (a) using 3 scalar products and (b) using themulti-
vectors/vector product.

3.3 Multi-Vectors/Vector Product on CPU

The multi-vectors/vector product is parametrized by two sizes v the length of the row-vector and

ng the number of solutions. The number of solutions ng should be carefully chosen to have enough
data reuse but limited radiation cost. To introduce an optimized implementation of this operator,

we can look at the number of uses for each value. The values from the row-vector are used ng
times: one time per resulting vector. The values from the past vector are used ng times, except for

the values at the beginning and the end: the first value is used once, the second twice, and so on

until the nthg value which is used ng times.
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One possible implementation is oriented by limiting the number of memory global reads (in the

sense of vector accesses). For each values from the row-vector that is read, we can apply it to the

ng result vectors; with this approach each row-vector value is read once and thus it costs v distinct
loads (we cannot do better). For the past vector values, we propose to use an intermediate array

which contains the past values that matches the current computing position in the slice; each past

value is read once and copied into the intermediate array and later used for the ng result vectors.
For the past vector the number of loads from the memory is v + ng − 1 but the number of loads

from the intermediate array is ng× v for the entire multi-vectors/vector product. Our intermediate

array is of dimension ng − 1, and we perform a shi operation of its values at each iteration to

avoid reading from the past vector. This method is presented in Algorithm 4. We describe in

Section 3.3.1 how this algorithm can be implemented with SIMD and in Section 3.3.2 how we can

improve its performance.

Algorithm 4: Multi vectors/vector product
Data: ng the number of result vectors to compute simultaneously (should be ≥ 2)
function MultiVectorsVector(vec[SIZE_VEC], past[SIZE_VEC+ ng − 1]) : res[ng]

register res[ng] = 0;
// We store the first past values (to load them once)
register buffer[ng-1];
for idxBuffer = 0→ ng-2 do

buffer[idxBuffer] = load(past[idxBuffer]);
end
// For all values in the vec
for idxVec = 0→ SIZE_VEC-1 do

// Copy the current vec value
register value = load(vec[idxVec]);
for idxRes = 0→ ng-3 do

res[idxRes] += value * buffer[idxRes];
// Shift the buffer value for the next idxVec loop
buffer[idxRes] = buffer[idxRes+1];

end
res[ng-2] += value * buffer[ng-2];
// Load a new value from the past vector
buffer[ng-2] = load(past[idxVec+ng]);
res[ng-1] += value * buffer[ng-2];

end
return res ;

3.3.1 SIMD Multi-Vectors/Vector Product

We give a description of the Single Instruction Multiple Data (SIMD) in Appendix C.2, and we

remind here that SIMD are instructions which perform the same operation on multiple values that

are contiguous in memory. In the original multi-vectors/vector, from Algorithm 4, we use scalar

floating point value. One can delegate the optimizations to the compiler and hope that it will be

able to use SIMD instructions but in such an approach, the compiler may try to replace scalar

mathematical operators by SIMD instructions. Whereas, with the usage of SIMD intrinsics, the

algorithm can be improved in a more complex way.
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Instead of computing a scalar, the outer loop can be unrolled by the number of values in the

SIMD data type lSIMD. This conversion continues by transforming the intermediate array into

SIMD data type, and thus shiing its values is similar to a shi of size lSIMD. Figure 3.11 shows an

example of the SIMD algorithm for a data type size lSIMD = 2. To ensure performance, the length

of the row-vector v should be a multiple of lSIMD otherwise extra tests are required. This condition

is possible by padding with zero which in the worse case may add N× N× (lSIMD − 1) zeros.
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Figure 3.11: SIMDMulti vectors/vector product, with ng = 4, v = 6 and SIMD data type size lSIMD = 2.

The complete algorithm of this operation is given in Algorithm 5. UsingC++ template, described

in Appendix E.1.1, this algorithm can be used with any ng size and any SIMD types (as SSE or AVX

for instance). Depending on the parameters ng and lSIMD, the compiler will remove some loops

because they will never be used.

3.3.2 Memory and Assembly Optimizations

In the presented multi-vectors/vector algorithms, we load the past data into an intermediate array

because it has many benefits in terms of memory access optimizations. First, the memory from

the past vector may not be correctly aligned while it is an important criterion for the load SIMD

performance, and that is why by moving the data into a local array we can ensure aligned accesses.

Secondly, we avoid aliasing because we work with local data (there are no multiple pointers pos-

sible to our local array). Finally, we limit the cache pollution because we read from the global

arrays only once, and this makes the LRU cache management appropriate: each value is read once

and never used again. However, another improvement is to use the CPU registers to store the

working variables instead of the memory (and the cache). It is possible to advise the compiler to

use a register for a given variable using the register key-word but this is not guaranteed. Using the

registers is very efficient because they are the fastest memory, and many instructions require at

least one operand to be in a register. But for large ng, the available registers on a CPU may not be

sufficient to avoid the usage of the RAM. Finally on previous generation architecture, the usage of

an intermediate array instead of several variables - which is possible only if loops are completely

unrolled - was less efficient.

In assembly we can play directly with the registers. As a result, the intermediate array of the

previous algorithm is no longer an array but composed by several registers. Moreover, the ng
intermediate results for the current computed row-vector can be stored in the registers too. But

this approach is not generic and it is possible only with ng + ng − lSIMD < Rf, with Rf the number

of floating point registers.
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Algorithm 5: Multi vectors/vector product with SIMD.
Data: ng the number of result vectors to compute simultaneously (should be ≥ 2)
lSIMD the number of floating point values proceed by the SIMD instructions
The size of the row-vector v or SIZE_VEC should be a multiple of the SIMD data type size lSIMD
function MultiVectorsVectorSimd(vec[SIZE_VEC], past[SIZE_VEC+ ng − 1]) : res[ng]

register SIMD res_simd[ng] = 0;
register value = load(vec[0]);
// We work first with values that are used once
for idxRes = 0→ lSIMD-1 do

res_simd[idxRes] = load(past[idxRes]) * value;
end
// We compute the rest of the res values and keep values in buffer
register buffer[ng-lSIMD];
for idxRes = lSIMD → ng-1 do

buffer[idxRes-lSIMD] = load(past[idxRes]);
res_simd[idxRes] = buffer[idxRes-lSIMD] * value;

end
past = @past[lSIMD] ;
// For all values in the vec
for idxVec = lSIMD → SIZE_VEC-1 by step lSIMD do

// Copy the current vec value
value = load(vec[idxVec]);
// Compute values that do not need shift
for idxRes = 0→ Min(lSIMD-1,ng-lSIMD) do

res_simd[idxRes] = buffer[idxRes] * value;
end
// Compute values that can perform a shift
for idxRes = lSIMD → ng-lSIMD-1 do

res_simd[idxRes] = buffer[idxRes] * value;
buffer[idxRes - lSIMD] = buffer[idxRes];

end
// Compute values that reload data
for idxRes = ng-lSIMD → ng-1 AND idxRes ≥ lSIMD do

buffer[idxRes-lSIMD] = load(past[idxRes]);
res_simd[idxRes] = buffer[idxRes-lSIMD] * value;

end
// Compute values that do not reload data
for idxRes = ng-lSIMD → ng − 1 AND idxRes− lSIMD < 0 do

res_simd[idxRes] = load(past[idxRes]) * value;
end
past = @past[lSIMD] ;

end
return SimdToScalar(res_simd) ;

3.3.3 Managing the Variation of the Row-Vectors

The slices are composed of contiguous NNZ values on their rows, but these row-vectors have

different lengths.To achieve performance, the presented computational algorithms cannot have

dynamic/runtime vector length v and solution size ng. It is possible to compile different versions

of the kernel for different ng because it is fixed for an entire simulation. However, for the multi-

vectors/vector kernels, we need to have an efficient way to choose among the different compiled

versions when we process row aer row in a slice. One solution is to compute several kernels

and to have pointers of functions that we use for each row-vector depending on its length. One
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of the drawbacks of this method is that the functions cannot be inlined and that it is a multi-steps

access: load the row-vector length v, retrieve the corresponding function pointer and call it. Even

if the hardware has some module to prepare such a call in advance, this is efficient only when the

function pointer is always the same. That is why we end up with a different approach based on

the switch-case statement. The idea is to compile different kernels and to call them from a switch
that manages the different row-vector lengths. We put the function in the switch based on the

hypothetical durations as shown in Algorithm 6: the cheapest function should be accessed very

quickly whereas we agree to pay an extra-cost for the longest functions.

Algorithm 6: Efficient access to computational kernel.
Data: The current example uses SIMD data type of size 2 and supported by three kernels for row-vectors of

lengths 2, 4 or larger.
function SliceComputation(values[], vec_lengths[NB_ROW], vec_starting[NB_ROW],
res[NB_ROW × ng] ) :

for idxRow = 0→ NB_ROW− 1 do
switch vec_lengths[idxRow] do

case 2 // Cheap access if length is 2
res[idxRow, 0:ng] += MultiVectorsVectorSimd_2( values, @past[vec_starting[idxRow]]) ;
break;

end
case 4 // In case length is 4

res[idxRow, 0:ng] += MultiVectorsVectorSimd_4( values, @past[vec_starting[idxRow]]) ;
break;

end
otherwise // Otherwise more expensive access for length multiple of 2

res[idxRow, 0:ng] += MultiVectorsVectorSimd_mod2( values, @past[vec_starting[idxRow]],
vec_lengths[idxRow]) ;

end
endsw
values = @values[vec_lengths[idxRow]] ;

end

3.4 Implementation on GPU

3.4.1 Slice Computation on GPU

On CPU, it is possible to achieve performance by processing the row-vectors individually, but this

kind of approach is no longer efficient on GPU because of its hardware particularities that we

resume briefly before introducing two methods to compute a slice on this device. A more detail

presentation of the GPU is provided in Appendix C.4. One can see a GPU as amany-threads device

or a large SIMD processor unit. It executes several teams of threads, usually called blocks. In this

paper, we explicitly refer to this set of threads as a thread-block to avoid the confusion with a block

which is a sub-part of a matrix. The number of thread-blocks represents the dimension of the GPU

grid. When running a GPU kernel, one has to choose the number of thread-blocks and the number

of threads inside a thread-block. There are different levels of memory in most GPUs. The global

memory can be accessed and shared by all the threads even from different thread-blocks, but it

is slow and even slower if accesses are unaligned/uncoalesced inside a thread-block. The shared
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memory is fast and shared among the threads of a thread-block, but it is very limited in size and

can be slowed down because of bank conflicts. Finally, each thread has dedicated registers/local

memory.

To provide a many-thread approach, we work with a block of values instead of vectors. We

present two cut-out strategies that transform a slice in blocks, the Full-Blocking and the Contiguous-

Blocking approaches. We call these pieces blocks and their dimension br (the number of rows) and

bc (the number of columns). In both cases bc should be at least equal to dmax which is the longest

row-vector in all the slices of the current simulation.

3.4.2 Full-Blocking Approach

In this approach, we extract and copy parts of the slices into blocks and leave the original struc-

ture of the values unchanged. A block contains the row-vectors that are inside a 2D interval of

dimension br per bc. If two row-vectors are separated by more than br rows or if they have some

values separated by more than bc columns, they cannot be in the same block. There are several

algorithms to cut out a slice matrix into blocks. Our implementation is a greedy heuristic which

has a linear complexity with respect to the number of rows in the slices. The algorithm starts by

creating a block at the first row (for the first row-vector). Then, it progresses row by row and starts

a new block whenever the current row-vector does not fit in the current block. Figure 3.12 shows

an example of a cut-out using this algorithm and the resulting blocks. The generated blocks remain

sparse in most cases. The algorithm needs a pair of integers for each block, which corresponds

to the position of the upper-le values inside the original source slice as shown in Figure 3.12c.

We have compared this algorithm to a dynamic block height br by increasing the blocks until a

row-vector is out or even by using a dynamic programming approach to have as few blocks as pos-

sible (results are not included in this study). However, the extra-costs of seeking the best block

configuration or having unpredictable block sizes are too significant.

Slicej

a*<n(j)

Slicej

(0,0) (5,4)

(7,5) (8,0)

(a) (b) (c)

Figure 3.12: Example of a slice cut-out into blocks with the Full-blocking approach: (a) the original slice, (b) the blocks found
by the greedy algorithm and (c) the blocks as they are going to be computedwith their corner positions in the original slice.
The block dimension is bc = 7 × br = 7.

The computation we have to perform is identical to the multi-vectors/vector product introduced

in Section 3.2.3 and is called a multi-vectors/matrix product. It is also similar to a matrix/matrix
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product with a leading dimension of one in the past values (which is not a matrix, but a special

vector).

In this paragraph and in Figure 3.13, we give some implementation details of this operator on

GPU. A thread-block of br threads is in charge of several blocks (all of dimension br×bc) from a slice

interval. First, the threads copy the past values needed by a block in a shared memory array of size

bc + ng − 1. Each thread treats one row per block and computes ng results. The outer loop iterates

bc times over the columns of the block. The inner loop iterates ng times to allow the threads to

compute the result by loading a past value and using the block values. The ng results are stored into
local/register variables, which are written back to the main memory once a thread has computed

its entire row. In this approach the threads read the block values from the global memory once and

in a coalesced scheme column by column (the blocks are stored in column major). Also, ng and bc
are known at compile time, thus the loops over the columns and the results can be unrolled. This

is possible using C++ templates; we compile lots of different kernels and select the appropriate one

at runtime. There is no bank conflict because all the threads read the same values at the same time

from the shared memory. Therefore, there are only broadcast operations.
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Figure 3.13: Example of the computation of a block from Full-blocking on GPUwith ng = 3, bc = 16 and br = 9: (a) the
original slice is split into blocks during the pre-computation stage, (b) the blocks aremoved to the devicememory for the
summation stage and (c) a group of threads is in charge of several blocks and compute several summation vectors at the
same time by performing amulti-vectors/matrix product. In c− I) the threads copy the associate past values, in c− II) each
thread computes a row and in c− III) threads add the results to themainmemory.

The drawback of thismethod is the number of generated blocks and thus the extra-zeros padding.

In the worst case, this method can generate one block of dimension br × bc per row. Such configu-

rations occur if br is equal to one or if each row-vector starts at a very different column compared

to its neighbors. So bc should be large enough to reduce the number of blocks, but the larger bc is,
the more zeros are used to pad. The numbering of the unknowns is also an important criterion,

because the positions of the NNZ values, and thus the number of blocks, depend on it. In Sec-

tion 3.7.4 we study the number of blocks generated for different numbering on a realistic test case.

However, the main advantage of this method is that all rows in a block depend on the same past

values.
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3.4.3 Contiguous-Blocking Approach

In this approach, we do not keep the original structure of the values from a slice in the output

blocks. We copy all the row-vectors into a block no matter where they start and where their values

are positioned. In the Full-Blocking, all rows from a block have been copied from the same columns

in the original slice. However, this is not guaranteed in the Contiguous-Blocking and each row of

a block may come from different columns of the slices as shown in Figure 3.14. That is why we

need to store the origin of the rows in the slices inside a vector to be able to compute them with

the correct past values, see Figure 3.14c. It is possible to create several blocks per slice, but here

we consider that br = N and we create one block per slice.
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Figure 3.14: Example of a slice cutting-out into blocks with the Contiguous-Blocking approach: (a) the original slice, (b) the
block build one row after the other and (c) the blocks as they are stored and computedwith the starting point of each row in
the original slice. The block dimension is bc = 7 and br = N.

The kernel implementation of the Contiguous-Blocking is very similar to the Full-Blocking, except

that it must take into account the column differences as shown in Figure 3.15. Instead of copying

the past values needed for a block in the sharedmemory, the threads copy all the past values needed

for a slice which is a vector of length Kmax+ng− 1. The threads of a thread-block do not access the
same past values, but each thread accesses the past values that match the starting point of the row

it has to compute. The threads continue to read the block values as they do in the Full-Blocking

with a regular pattern. We may not be able to create a thread-block with N threads in it and in

this case, some threads will be in charge of the computation of several rows of a block/slice. With

this implementation, there might be some bank conflicts because the shared memory accesses are

driven by the original column positions of the values: the threads might need the same values or

different values from the same bank or different values in different banks.

The Contiguous-Blocking generates one block per slice. The number of columns in a block bc
must be at least equal to the longest row-vector dmax and there is no gain to have bc greater than
dmax. From the block size and the number of unknowns, we know the total number of values in the

system generated by the Contiguous-Blocking: N×N× bc. By calling dav the average length of the

row-vectors in the simulation, there are N×N× dav NNZ values, and the blocks are padded with

bc − dav zeros per row in average. The memory cost of this approach is N× bc floating values and
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Figure 3.15: Example of the computation of a block fromContiguous-Blocking on GPUwith ng = 3, bc = 11 and nb −
threads = 9: (a) the original slice is transformed in a block during the pre-computation stage, (b) the blocks aremoved to
the devicememory for the summation stage, (c) a thread-block is in charge of the blocks from a slice interval and computes
several summation vectors at the same time by performing amulti-vectors/matrix product. In c − I) the threads copy the
past values associated to a slice, in c− II) each thread computes a row and read the past values that match its own row and
in c− III) threads add the results to themainmemory.

N integers per block generated from one slice, plus a copy of Kmax + ng − 1 floating values from
the global to the shared memory and one matrix of N× ng floating values for the results. The total
number of Flop is N× br × 2, but the effective/real number of Flop is N× dav × 2 per block.

3.5 Parallelization

3.5.1 Parallelization Strategy for Homogeneous Nodes

Shared memory parallelization. The straightforward parallelization in shared memory is imple-

mented by splitting the slices’ computation and the radiation between threads. This is done using

OpenMP for pragma [6] but, to better balance the workload over the threads, we assign to each

of them the same amount of data. Finally, most linear solvers do not support shared memory

parallelization and in such a case the call to the solve routine is done by a single thread. No op-

timizations are done to manage the NUMA effects that happen when a processor accesses to its

non-local memory, see Appendix C.1 for more details.

Distributed memory parallelization. The parallelization over distributed memory is done using

Message Passing Interface (MPI) [7] and we name a MPI process a process. In our implementation,

each process is responsible of several slices inside an interval. This interval from Ai to Bi can be

obtained in different ways: for example, by dividing the number of N slices equally or by taking

into account the amount of work in each slice. Each process needs to have the past values of the

unknowns which match its slice interval. In a first stage, each process computes a part of the

summation vectors without communicating with others. Then, all processes synchronize and call

a linear solver to solve Equation 1.5 and obtain the current solution an. This algorithm is presented

in a schematic view in Figure 3.16.
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Figure 3.16: Parallel Solver Schematic View

However, from our implementation of the multi-vectors/vector product, we compute several

time steps together followed by a radiation stage. Therefore, there is an inner loop to do the

radiation while the outer loop progresses by ng steps as shown in Figure 3.17.
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Figure 3.17: Parallel Solver withMultiple Time Steps Schematic View

The complete algorithm is written in Algorithm 7. If the number of threads per process is 1 and
the parallelism relies on MPI only, we refer this implementation as the Full-MPI. If the number of

threads is greater than 1, we refer to it as the Hybrid-MPI/OpenMP implementation. From the

algorithm, we remark that, at each iteration, the current result an is saved to disk for later work,
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and it also has to be distributed on each process to give them the current result for their interval

jstart to jend.

Algorithm 7: Complete simulation with Hybrid-MPI/OpenMP parallelization
Data: Slices[N] the interaction matrices in slice/vectors shape. Each process works on an interval [j_start; j_end]

that cover the entire slices.
Result: PastValues[j_end− j_start+ 1][NB_STEPS+ ng − 1] the state of the unknowns for all time step
begin

// Linar Solver initialization (factorize/inverse M0)
invM0_handle = linear_solver(M[0]);
// For all time step with progression by ng
for n = 0 → NB_STEPS-1 by ng do

S[ng][N] = 0;
// Compute ng vectors with each slices in my interval
#pragma omp parallel reduce(+:S);
for j = j_start → j_end do

foreach Vec v in Slices[j].blocks do
S[:][v.row] += MultiVectorsVector(v.values, PastValues[j][v.col - ng + 1 :v.col + v.length]) ;

end
end
// Finalization
for idx = 0 → ng-1 do

distributed_reduce(S[ng - idx -1][:]);
an = solve(invM0_handle, L[n+idx][:] - S[ng - idx - 1][:]);
master saves an to disk;
// Copy result in Pastvalues format
PastValues[j_start:j_end][NB_STEPS - n - 1] = an[j_start:j_end];
// Radiation
#pragma omp parallel;
for past = idx + 1 → ng-1 do

S[ng - past][:] += SpMV(Mpast−idx[j_start:j_end],an[j_start:j_end];
end

end
end

end

3.5.2 Parallelization Strategy for Heterogeneous Nodes

A worker defines a processing unit or a group of processing units on the same node. We dedicate

one CPU core to manage one GPU and to be in charge of the kernel calls and the data transfers

between the host and the device. Thus, a GPU-worker is a couple of CPU/GPU. All the cores

from a node that are not in charge of a GPU are seen as a single entity called the CPU-worker.

So one node is composed of one GPU-worker per GPU and one single CPU-worker as shown in

Figure 3.18. All the workers take part in the summation step, but only the CPUs are involved

during the factorization ofM0 and the solves. Inside a CPU-worker, we balance the work between

threads as we do with nodes by assigning the same amount of data to each thread.

Dynamic Balancing between Heterogeneous Workers

A node i is responsible of the slices in the interval [Ai;Bi] and computes a part of the summation

sn, see Equation (1.3). However, this interval has to be balanced between the different workers
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Figure 3.18: Example of workers in a node composed of 12CPU and 3GPUs: (a) the CPU-worker composed of all the CPUs
that are not in charge of a GPU, (b) three GPU-workers each composed of a couple of CPU/GPU.

within the node. We constrain each worker to have a contiguous interval of data/slices which

enables copying andmoving in a single call. Furthermore, workers can have distinct computational

capacities, and the slices can have distinct costs. Therefore, the problem is to find the optimal

interval for each worker that covers the node slices and with the minimum wall time. The wall

time is the maximum time taken by a worker to compute its interval.

One possibility to solve this problem is to perform a calibration and to estimate the speed of

each worker. However, such an approach takes a non-negligible time, and it is difficult to consider

all the possible configurations and data transfers. We could also perform a warm-up stage and

have each worker computes the full slice interval to know the computation time taken for each

worker for each slice. Not only, this process can be extremely slow, but the fastest worker for

each slice individually may not be the fastest to compute a given interval. In fact, GPUs are much

more limited by their memory than CPUs, and if we assign a slice interval to a GPU that does not

fit in its memory, it will induce very slow copies (from CPU to GPU or even from hard-drive to

GPU). We propose an heuristic to balance the work aer each iteration in order to improve the

next ones. There are plenty of methods that can perform such an operation, and we propose a

greedy algorithm with a Θ(W) complexity, where W is the number of workers.

The algorithm we propose considers that the average time tavg of all workers in the previous

iteration is the ideal time and the objective for the next iteration. For the first iteration, we assign

the same number of slices to each worker. At the end of the iteration, each worker wi has computed

its complete interval of slices [ai; bi] in time ti. We do not measure the time taken for each individual

slice, but we have an estimation of the cost ci = ti/si, with si = bi−ai+1 as the number of elements

computed by the worker of index i.
Workers that were slower than average (if tavg < ti) should reduce their intervals. However, the

faster workers (if ti < tavg) should increase their intervals and compute more slices. We consider

that each slice on a given worker has the same cost. Therefore, for a slow worker wi we remove

ri = (ti − tavg)/ci slices from its interval. We would like to do the same for a faster worker and

add oi = (tavg − ti)/ci to its intervals. But in most cases, the number of elements to remove from

the slower workers is not equal to the number of elements we want to give to the faster workers.

For example, in a system with two workers and the following properties in the previous iteration:

worker w1 has computed s1 = 10 elements in t1 = 10s and worker w2 has computed s2 = 3
elements in t2 = 4s. The average execution time is tavg = (10 + 6)/2 = 8s and the first worker

should remove r1 = (10 − 8)/(10/10) = 2/1 = 2 elements, whereas the second worker should
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increase its interval by o2 = (8− 4)/(4/3) = 4/(4/3) = 3 elements.

Thus, the faster workers have to share the slices that have been removed. We sum the number of

available slices Sremoved =
∑

ri and the number of required slices Sgiven =
∑

oi and distribute them

using a weight coefficient. A faster worker will have its interval increased by oi×Sremoved/Sgiven which
guarantees an equality between the slices removed and given. The number of slices to compute is

updated for each worker (si = si− ri or si = si+ oi× Sremoved/Sgiven) and then a new contiguous slice

interval is assigned to each worker. An example of this heuristic is presented in Figure 3.19.
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Figure 3.19: Illustration of one iteration of the balancing algorithmwith 4workers. Workers 1 and 3 are above the average
and should drop 3 blocks and 1 block, respectively (red blocks). Workers 0 and 2 are under the average and should acquire
1/4 and 3/4, respectively of the dropped blocks (blue blocks).

This algorithm should find an optimal solution in one iteration if there is the same amount of

work per element. However, there is no guarantee that the algorithm can find the optimal solution

or even that it improves as it iterates. Theoretically, we can stop the algorithm if a configuration

does not give a better result than the previous one, but in practice, some latency or unpredictable

events make this statement unsafe. Therefore, in practice we stop the algorithm aer a given

number of iterations and rollback to the best configuration that was generated.

3.5.3 Parallel Linear Solvers Considerations

The costly operation is the summation stage, but the solve of M0 should not be neglected. In fact,

the number of unknowns may be small, and state-of-the-art solvers are made to manage matrices

with dimension of several millions of unknowns. Moreover, the solve and the obtaining of the result

an are the only operations that use communication between nodes, which makes them critical to

scale among a large number of nodes.

Since the matrixM0 is sparse it is natural to rely on a sparse solver. We use it as a black-box and

it is in charge of managing the matrix ordering, the communications and the data distribution.

While it can seem unnatural to use a dense solver in our case, the question should be asked.

In fact, in our problem, we perform a lot of solves using the same matrix M0 and, as stated pre-

viously, the dimension of this matrix is small for sparse solvers. From this key-point, we may ask

whether a dense solver will finally scale more than a sparse solver and at a which point it will be-

come competitive. In addition, if we compute the inverse M0−1 we reduce drastically the number
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of communication at each turn, which is critical as the number of nodes increases. In fact, the

processes do not need the entire an result but only the part that match their slice interval.

Aer the summation stage, each node hosts a partial result sn. The processes can divide the

application of illumination ln and then perform a reduction all-to-all to have all processes holding

s̃n. Aerwards, each process multiplies this vector by its part of M0−1 and obtains a sub-vector of

an that matches its slice interval. The processes are then able to perform the radiation or the future

slice computations. Therefore, it makes the processes communicate only once per iteration. But

we must inverse the matrix once at the beginning of the application. Moreover, the M0 matrices

are usually well conditioned which leads to a stable accuracy in most algorithms.

3.5.4 Division of the summation (Far Field Near Field)

The call to the linear solver is the only communication point in our strategy and that is why we

try to develop an algorithm that hides this potential bottleneck. One possibility is to perform a

call to the linear solver on one side and to compute a part of the summation on the other side; we

can only compute a partial summation vector sn+1 since the current result will be obtained aer

the solve. Once these two tasks are finished, we have an and a partial sn+1. We can compute the

radiation stage to obtain the complete sn+1 and we process it with the linear solver. Therefore, it

is one way to hide the communication, and it can be done using two main strategies.

If we think of having two threads T1 and T2 in charge of the simulation, the first strategy can be

expressed as follows. T1 calls the linear solver using sn to obtain an in time tSolve while T2 is perform-

ing the summation to compute a partial sn+1 in time tSummation. Then both threads are involved in the

radiation to generate sn+1 in tRadiation−Par. Aer this point, we are back to the initial state, and the

threads are divided again and the time for one iteration is given byMax(tSolve, tSummation)+tRadiation−Par.

In the second strategy T1 is in charge of the radiation alone. From the previous iteration, sn is a
partial summation, T1 performs the radiation in tRadiation−Seq and then calls the linear solver using sn

to obtain an while T2 is performing the summation to compute a partial sn+1. In this case, there is

a simple join between both threads, and the execution time is Max(tSolve + tRadiation−Seq, tSummation).

However, the algorithm becomes more complicated in our case because we compute several

summations together, see Section 3.2.3. In this case, on one hand we compute an to an+ng−1 and

on the other hand the partial sn+ng to sn+2ng−1. This makes the radiation expensive and thus the first

strategy is certainly to be privileged because we expect to haveMax(tSolve, tSummation)+ tRadiation−Par <

Max(tSolve + tRadiation−Seq, tSummation). In practice the result are better than the usual approach but this

might be an interesting approach in case of extremely high number of nodes.

3.6 Building the Interaction Matrices

As stated in the context, our solver is a layer of an application and our study does not cover the

generation of the interactionmatrices. But our solvermust call themodule responsible for this work

during an initialization stage. We can estimate the slice interval from the problem dimension, and

since the matrices are symmetric positive definite, we can reduce the generation time by dividing
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the work among the threads/processes. Figure 3.20 shows how this generation is divided among

the nodes and how these ones need to communicate to make all the nodes having their slices.

However, a balancing stage is necessary before beginning the simulation to have around the same

amount of data per nodes.
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(4,3)
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P0 P1 P2 P3 P4 P0 P1 P2 P3 P4

P0 P1 P2 P3 P4 P0 P1 P2 P3 P4

a) Each process generates 
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b) Processes with rank < 
np/2 send data to 
processes with rank > 
np/2 whose then hold all 
their data until the 
diagonal blocks.
Senders : P0, P1
Receivers : P3, P4

d) Every processes send 
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for all processes is shown.

e) Each process can generate 
its own slices from 
generated and received 
blocks

(3,3)

P0 P1 P2 P3 P4
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blocks under the diagonal. 
Here, P0 receive one block 
form each process

Figure 3.20: InteractionMatrices Generation on distributedmemory.

3.7 Performance and Numerical Study

3.7.1 Experimental Setup

We use different configurations in terms of hardware (CPU/GPU) and libraries (Gcc/MPI) on the

Plafrim test-bed. In all cases, parallelization over nodes is supported byMPI [7] and parallelization

inside nodes over sharedmemory by OpenMP [6]. The calculations are performed in Single (32-bit

arithmetic) or Double (64-bit arithmetic).

SSE Configuration

We use up to 32 nodes and each node has the following configuration: 2 Quad-core Nehalem

Intel® Xeon® X5550 at 2.66GHz and 24GB (DDR3) of shared memory. Peak performances

are 21.28GFlop/s in single and 10.64GFlop/s in double for one CPU core. We use the Gcc

4.7.2 compiler and Open-MPI 1.6.5. The compilation flags are -m64 -march=native -O3 -msse3

-mfpmath=sse. The direct solver is a state of the art solver Mumps 4.10.0 [98] which relies on

Scotch 5.1.12b.

SSE/Tesla Configuration

We use up to 8 nodes and each node has the following configuration: 2 Hexa-core Westmere

Intel® Xeon® X5650 at 2.67GHz and 36GB (DDR3) of shared memory and 3 NVIDIA Tesla

M2070 GPU (1.15GHz), 448 Cores, 6GB (GDDR5) of dedicated memory. Peak performances are
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21.36GFlop/s in single and 10.68GFlop/s in double for one CPU core and 1.03TFlop/s in single

and 515GFlop/s in double for one GPU. The nodes are connected by an Infiniband QDR 40Gb/s
network. We use the GCC 4.7.2 compiler, OpenMPI 1.6.5 library and CUDA SDK5.5. The compi-

lation flags for GCC are -m64 -march=native -O3 -msse3 -mfpmath=sse and for NVCC -arch=sm_20

-use_fast_math. The direct solver is also Mumps 4.10.0 which relies on Scotch 5.1.12b.

AVX Configuration

We use up to 20 nodes and each node has the following configuration: 2 Dodeca-core Haswell

Intel® Xeon® E5-2680 at 2, 50GHz and 128GB (DDR4) of shared memory. Peak performances

are 40GFlop/s in single and 20GFlop/s in double for one CPU core and the nodes are connected

by an Infiniband QDR 40Gb/s network. We use the GCC 4.9.2 compiler and OpenMPI 1.8.4

library . The compilation flags for GCC are -m64 -march=native -O3 -mavx -mfmad . The direct

solver is Mumps 4.10.0, and relies on Scotch 6.0.4.

AVX/Kepler Configuration

We use up to 5 nodes and each node has the following configuration: 2Dodeca-coreHaswell Intel®

Xeon®E5-2680 at 2, 50GHz and 128GB (DDR4) of sharedmemory, as in theAVX−Configuration,
and 4 NVIDIA Kepler K40M GPU (745MHz), 2880 Cores, 12GB of dedicated memory. Peak per-

formances are 40GFlop/s in single and 20GFlop/s in double for one CPU core and 4.29TFlop/s
in single and 1.43TFlop/s in double for one GPU. The nodes are connected by an Infiniband

QDR 40Gb/s network. We use the GCC 4.9.2 compiler, OpenMPI 1.8.4 library and CUDA SDK

7.0.28. The compilation flags for GCC are -m64 -march=native -O3 -mavx -mfmad and for NVCC

-arch=sm_30 -use_fast_math. The direct solver is Mumps 4.10.0, and relies on Scotch 6.0.4.

3.7.2 Balancing Quality Study

In Section 3.5.2, we describe the heuristic we use to balance the summation work among the

workers inside a node. In Table 3.3, we test this balancing method by emulating different cases

to study how far from the optimal distribution we are. We do not perform real simulations, but

we rather generate several configurations composed of two arrays. The first array represents the

workloads, which is the cost per element, and we refer to it as theWork Distribution (an element can

be seen as a slice in our study). The second array contains the performance of the workers, which

is the time taken per worker to compute a unit of work, and we refer to it as Worker Heterogeneity.
To get a worker virtual execution time we multiply the sum of the costs from the interval that

is assigned to this worker per its performance factor. The virtual wall time of a distribution is

obtained by taking the maximum virtual execution time from all workers involved. The balancing

algorithm is executed during a given number of iterations and compared to the optimal choice.

We find the optimal balance using dynamic programming, that is: finding the contiguous interval

for each worker that has the minimum wall time. The results show that the balancing algorithm is
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close to the optimal even when the cost per element or the worker performance factors are very

heterogeneous.

Work distribution\Worker heterogeneity

Up-Down 0.0% 0.1% 0.1% 0.0%

Up-Up 0.0% 0.0% 0.1% 0.1%

Up 0.1% 0.1% 0.2% 0.2%

Random 0.0% 0.0% 0.2% 0.0%

Stable 0.0% 0.0% 0.1% 0.1%

Table 3.3: Balancing AlgorithmVs. Optimal Choice. Extra-cost of the dynamic balancing algorithm against the optimal
choice after 40 iterations with 6workers and 10, 000 elements. A zero scoremeans that the optimal choice has been
achieved.

3.7.3 Sequential Flop-rate

CPU Multi-vectors/vector Product

We compare several implementations of themulti-vectors/vector product for the SSE−Configuration
and AVX − Configuration. We have ng = 8 as it is enough to bypass the memory bandwidth lim-

itation without paying too much extra cost in the radiation stage and there are enough floating

registers to apply the assembly optimizations.

The first implementation comes out of the Equation (3.2) and is implemented in C. Some im-

portant compilation flags are used to enable loop unrolling and the use of SSE or AVX instructions

by the compiler, but no manual use of SIMD is made. This is referred to as the Compiler Version

implementation.

The second version is written in C and comes out of Section 3.3.1. It is written with intrinsic SSE

functions proposed by the compiler and SSE data types (__m128(d)). We refer to it as the SSE-

Intrinsic implementation. A similar implementation is made using AVX intrinsics (__m256(d)) and
is called AVX-Intrinsic.

We have analyzed the assembly code the compiler has generated, and we have considered that

it is not optimal for both implementations. Thus, we have developed a third implementation in

asm64 assembly to maximize the data re-use as explained in Section 3.3.2. With ng = 8 it is

possible to use all 16 SSE registers to read each value only once from the main memory. We refer

to it as the ASM-SSE and ASM-AVX implementations. We developed an AVX-Template kernel

which use AVX intrinsics and with a template ng; this kernel can be compiled for any ng length and
relies on the Algorithm 5.

Figure 3.21 shows the Flop-rate in Double precision for different lengths of vector v using the
SSE−Configuration. The two SSE based implementations are close, but the ASM-SSE can achieve a

slightly higher Flop-rate for large vectors. Both implementations suffer from small cache effects for

Nr = 1 000 and v = 100 (Figure 3.21a) and for Nr = 20 000, v = 25 and v = 80 (Figure 3.21b).
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Figure 3.21: Performance evaluation inGFlop/s for themulti-vectors/vector slice computation code in Double precision
for three implementations with ng = 8 and the SSE− Configuration. The test cases are slices of dimensionNr × v.

Figure 3.22 shows the Flop-rate for different lengths of vector v using the AVX− Configuration
in Single and Double precision. This time the ASM-AVX version performs better in Single but

the AVX-Intrinsic version is better in Double. The AVX-Template is efficient but in Single it is less

efficient compared to SSE-Intrinsic. However, among these implementations, only the C-Compiler

and AVX-Template can be compiled for any ng. We see that all the SIMD version are suffering of

cache effects: in Single precision the speed decreases for v = 200, Figure 3.22a and Figure 3.22b,
and in Double precision for v = 100, Figure 3.22c and Figure 3.22d.
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Figure 3.22: Performance evaluation inGFlop/s for themulti-vectors/vector slice computation code for five implementa-
tions with ng = 8 and theAVX− Configuration. The test cases are slices of dimensionNr × v.
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The length of the vectors of the slices in real test cases depends on Δt the time step, and the size of

the elements on the mesh. In the airplane test case, each vector has a length between 1 and 15 and

the average length is 9.5. In this configuration, the ASM-SSE implementation achieves 3.9GFlop/s
per core (Compiler Version achieves 1.7GFlop/s) for a peak performance of 10.64GFlop/s.

GPU Full-Blocking Kernel Flop-rate

Table 3.4 presents the Flop-rate of the GPU and the CPU implementations for the blocks gener-

ated by the Full-Blocking method described in Section 3.4.2 using the SSE/Tesla − Configuration.
Table 3.5 shows the same study but using the AVX/Kepler−Configuration. We look at the Flop-rate

achieved by one GPU or one CPU-core for different sizes of dense blocks. We create thread-blocks

of br threads and the best dimension of the grid (the number of thread-blocks) depends on the size

of the block and on the number of blocks. The performance increases with the block size on GPU

because increasing br increases the number of threads in a thread-block and increasing bc provides
more work to each thread and allows to unroll larger loops. The CPU implementation benefits

also from the instruction pipelining when we increase br or bc, but its performance decrease when

the block exceeds a size (bc > 16 and br > 32) due to cache effect. We remind that there are

zero values in the blocks and that increasing the size of the blocks should reduce the number of

generated blocks, but it also increases the zero padding. So finding the correct dimension is a

matter of finding the fastest kernel for the generated number of blocks (% of NNZ).

Width (bc)
16 32 64 128 16 32 64 128

Height (br) GPU CPU

Si
ng
le 32 53 64 105 139 2.9 8.4 8.8 8.2

64 124 176 230 270 8.8 7.5 6.7 6.3
128 138 196 244 280 (27%) 8.2 7 6.4 6 (28%)

D
ou

bl
e 32 39 51 67 68 2.5 3.6 3.4 3.5

64 68 95 128 136 3.4 3.1 3 2.8
128 73 100 128 141 (27%) 3.8 3.1 3 2.9 (27%)

Table 3.4: Performance of computing the blocks from Full-Blocking. Performance inGFlop/s for 420 slices com-
posed of 6400 rows and bc columns and ng = 8. % percentage of the Peak performance against single|double: GPU
1.03TFlop/s|515GFlop/s, CPU 21.36GFlop/s|10.68GFlop/s (SSE/Tesla− Configuration).

GPU Contiguous-Blocking Kernel Flop-rate

Table 3.6 presents the Flop-rate of the GPU and CPU implementations for the blocks generated by

the Contiguous-Blocking method described in Section 3.4.3 using the SSE/Tesla − Configuration.
Table 3.6 shows the same study but for the AVX/Kepler−Configuration. We have no choice in the

block size parameters: br is set toN and bc to dmax. This is a drawback for the CPU version because it

leads to a large block and a high leading dimension between columns but we agree to pay this extra

cost since our goal is to concentrate on the GPU. This method has better performance for the GPU

against Full-Blocking which means that it does not pay any extra-cost for its irregular/uncoalesced

70



Width (bc)
16 32 64 128 16 32 64 128

Height (br) GPU CPU

Si
ng
le 32 58 86 103 121 4.8 4.8 4.8 4.7

64 105 161 194 228 7.5 7.5 7.7 7.6
128 140 219 303 372 (8%) 8.4 8.4 8.3 8.4 (21%)

D
ou

bl
e 32 46 66 77 93 4.3 4.3 4.4 4.3

64 79 116 138 167 4.6 4.7 4.7 4.6
128 89 137 187 231 (16%) 5.6 5.7 5.7 5.7 (28%)

Table 3.5: Performance of computing the blocks from Full-Blocking. Performance inGFlop/s for 420 slices com-
posed of 6400 rows and bc columns and ng = 8. % percentage of the Peak performance against single|double: GPU
4.29TFlop/s|1.43GFlop/s, CPU 40GFlop/s|20GFlop/s (AVX/Kepler− Configuration).

shared memory accesses. Moreover, this implementation copies all the past values needed by

an entire slice in the shared memory which is an advantage compared to the GPU Full-Blocking

because it copies past values for each block (smaller copies but more frequent).

Width (bc)
16 32 64 128 16 32 64 128

GPU CPU
Single 146 203 251 285 (28%) 2.7 3 2.3 2.3 (11%)
Double 82 113 139 158 (31%) 2 1.6 1.6 1.4 (13%)

Table 3.6: Performance of computing the blocks fromContiguous-Blocking. Performance inGFlop/s for 420 slices com-
posed of 6400 rows and bc columns andwith 14GPU thread-blocks of 512 threads and ng = 8. % percentage of the Peak
performance against single|double: GPU 1.03TFlop/s|515GFlop/s, CPU 21.36GFlop/s|10.68GFlop/s. The CPU version
is an C optimized by the compiler (SSE/Tesla− Configuration).

Width (bc)
16 32 64 128 16 32 64 128

GPU CPU
Single 243 338 431 496 (11%) 4.3 5.5 7.8 6.8 (17%)
Double 143 199 248 286 (20%) 3.9 5.6 4.2 4.3 (21%)

Table 3.7: Performance of computing the blocks fromContiguous-Blocking. Performance inGFlop/s for 420 slices
composed of 6400 rows and bc columns andwith 15GPU thread-blocks of 1024 threads and ng = 8. % percent-
age of the Peak performance against single|double: GPU 4.29TFlop/s|1.43GFlop/s, CPU 40GFlop/s|20GFlop/s
(AVX/Kepler− Configuration).

Warp occupancy and performance of the Contiguous-Blocking kernel. In Section 3.4.1 we give an

overview of the GPU specifications, but to achieve performance with this architecture we also need

to focus on hardware details. The current discussion is based on the SSE/Tesla − Configuration
GPU but the same principle applies to the AVX/Kepler − Configuration GPU. With the M2070,
a thread-block can use a maximum of 32768 registers and 49152 bytes of shared memory and

supports 1536 threads. This GPU has 14 multiprocessors each with a warp of size wp = 32 and

one can see this GPU as 448 CUDA Cores. However, there is no concurrency inside a warp. Using

this information, we have to fill all the multiprocessors by choosing the number of thread-blocks
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and the number of threads. The CUDA compiler (NVCC) gives us the memory occupancy of our

kernel. Each thread uses 62 registers, and one thread-blocks needs 6104 bytes of sharedmemory to

store the past vector of lengthKmax+ng−1 (withKmax = 756 and ng = 8). The size of the memory

occupancy in the shared-memory is not related to the number of threads and the available shared-

memory does not appear as a limitation. On the other hand, the number of available registers

limits the number of threads to maxth = 32768 div 62 = 528 per thread-block. If we use more

threads than maxth, the registers become insufficient and the kernel will use the local memory as

a replacement which is drastically slower. It is recommended that the number of threads nbth in
a thread-block is a multiple of the warp size wp; thus, for our configuration nbth = 512 ≤ 528
threads. Choosing nbth not to be a multiple of wp means that some multiprocessors will be under-

exploited (some CUDA cores will remain idle). We have implemented our kernel to have low

registers and shared memory usage but also low divergence between threads. In fact, divergence

between threads is a costly operation since it requires to perform all the different code paths of the

threads inside a warp separately. We have two divergences that may happen during the copy of

the past vector into the shared memory or during the loop over the rows. When copying the past

vector, the threads with id < (Kmax + ng − 1) mod nbt perform one extra copy compared to the

others. Since the number of threads may not be a multiple of the number of row N, some threads

could perform more computation. Finally, all accesses to the global memory are coalesced or

similar inside a thread-block. TheGPUhides the global memory latency by swapping threads on the

multiprocessors, while a warp of threads is requesting amemory access. Since we have 512 threads
per thread-block, we just need to have 14 thread-blocks to ensure that the 14GPUmultiprocessors

are filled. Having more than 14 thread-blocks is not needed as it could deliver worse performance

because of the costs for the GPU to manage thread-blocks and increase the reduction work of the

result matrices. The source code of the Contiguous-Blocking kernel implementation is given in

Appendix C.4.

3.7.4 Test Case

We now consider a real simulation to study the parallel behavior of the application. Our test

case is the airplane presented in Section 1.2.4. We remind that the airplane is composed of N =

23 962 unknowns, 24157 vertices and 48119 elements.The simulation has to perform 10 823 time

iterations, and there are Kmax = 341 interaction matrices. The total number of non-zero values

in the interaction matrices, except M0, is 5.5 × 109. The longest row-vector dmax is 15 and the

row-vectors have 9.5 values in average. For one iteration, the total amount of Flop to compute the

summation sn is about 11GFlop. If we consider that the solution step of the system associated with

M0 has the cost of a matrix-vector product, the total amount of Flop for the entire simulation is

130 651GFlop. In single precision we need 50GB to store all the data of the simulation such that

we need at least 4 SSE− Configuration nodes to have the entire test case fitting in main memory.
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Number of Blocks from the Full-Blocking

The Full-Blocking generates blocks from a given slice depending on the block size (br and bc) and the
position of the NNZ values inside the slices. Therefore, the numbering of the unknowns is crucial

to decrease the number of blocks. We tested different ordering methods, but the spatial ordering

gave better results (the comparison is not given in the current study). For example, we tried to

number the unknowns by solving a Traveling Salesman Problem, using one or several interaction

matrices as proposed in [22]. Here we present the results for the Morton indexing [74] and the

Hilbert indexing [75]. In both cases, we compute a unique index for each unknown and sort them

accordingly. It is possible to score the quality of the ordering by looking at the contiguous values

between the row-vectors. If two consecutive row-vectors vji and vji+1 from Slicej have qji,i+1 values

on the same columns, we describe the quality between these two rows as (qji,i+1)
2. The quality of

a slice is the average quality between its rows and the quality of the entire system is the average

quality of the slices. Using the original ordering provided by the mesh generation, the ordering

score for all the slices is 33. By ordering the unknowns using Morton and Hilbert indexing, we

obtain the scores 54 and 55, respectively. This means that using these spatial ordering increases

the quality and makes most of the consecutive row-vectors having contiguous NNZ values in the

same columns.

Table 3.8 shows the number of blocks depending on the type of ordering and the size of the

blocks when we process the slices of the test case using the Full-Blocking from Section 3.4.2. It

is clear that numbering the unknowns with a space-filling curve drastically reduces the number of

blocks (NBB in the table). The table also contains an estimation of the computation time (E≈) to

process the generated blocks with oneGPUof the SSE/Tesla−Configuration, using the performance

measures from Table 3.4. We see that increasing the size of the blocks does not always reduce the

number of blocks. For example, with the Morton Indexing the br parameter does not improve the

filling of the blocks significantly.

These results show the limits of the Full-Blocking approach. The best estimated time E≈ which

is obtained using Morton Indexing has only 14.4% of NNZ values. That means that the memory

requirement is multiplied by more than 6 and that the real kernels performance is divided by 6.
Moreover, in order to find out the best block size, we need to do a complete study (at least try

different blocks size for a given ordering) which cannot be carried out in a real simulation. The

Contiguous-Blocking approach, on the other hand, only needs to know the longest row-vector dmax

which is 15 in the airplane test case and can be deduced from the simulation properties. With

an average length of 9.5 for the row-vectors and 23 962 unknowns we have 63% of NNZ using

Contiguous-Blocking. Moreover, the Contiguous-Blocking is faster on GPU than the Full-Blocking.

Therefore, we do not use the Full-Blocking method in the rest of the paper to run the simulation.

3.7.5 Linear Solvers for M0

The choice of the linear solver is an important criterion to ensure the scalability of the whole

application. Figure 3.23 shows some timing for different solvers to work with the M0 matrix of
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br × bc
No Ordering Morton Indexing Hilbert Indexing

NBB NNZ% E≈ NBB NNZ% E≈ NBB NNZ% E≈
32 x 16 121 · 106 8.8% 3.1 36 · 106 29.6% 0.95 36 · 106 29.6% 0.95
32 x 32 115 · 106 4.6% 4.6 18 · 106 29.1% 0.74 18 · 106 28.9% 0.75
32 x 64 114 · 106 2.3% 7 9 · 106 27.5% 0.59 9 · 106 27.3% 0.6
32 x 128 114 · 106 1.1% 13.7 5 · 106 23.8% 0.68 6 · 106 22.4% 0.72

64 x 16 74 · 106 7.2% 2.25 36 · 106 14.9% 1.08 36 · 106 14.9% 1.08
64 x 32 63 · 106 4.2% 2.75 18 · 106 14.9% 0.78 18 · 106 14.9% 0.78
64 x 64 59 · 106 2.2% 3.82 9 · 106 14.8% 0.58 9 · 106 14.7% 0.58
64 x 128 58 · 106 1.1% 7 4 · 106 14.4% 0.56 4 · 106 14.3% 0.56

128 x 16 48 · 106 5.6% 2.71 35 · 106 7.5% 2.02 35 · 106 7.5% 2.02
128 x 32 32 · 106 4.1% 2.68 17 · 106 7.4% 1.47 17 · 106 7.5% 1.47
128 x 64 25 · 106 2.6% 3.30 9 · 106 7.4% 1.15 9 · 106 7.4% 1.15
128 x 128 22 · 106 1.4% 5.27 4 · 106 7.4% 1.06 4 · 106 7.4% 1.05

Table 3.8: Number of blocks for the Full-Blocking and the airplane test case. Number of blocks generated by the Full-
Blockingmethod in the airplane test case for different block sizes (br × bc) and different orderings. For each size and order-
ing we show the number of blocks (NBB), the percentage of non-zeros in the blocks (NNZ%) and the estimated time to com-
pute the blocks with one GPUwhen using the GPU kernel performancemeasures (E≈) from the SSE/Tesla−Configuration.

the airplane test case. The factorizing time is important, but since we solve the system at each

iteration the aim is to chose the solver which minimizes the total time TFacto + NLoop × TSolve. We

explain in Section 3.5.3 why the usage of dense solver might be beneficial and in the study we

test a dense linear solver (Scalapack) but we also inverse the matrix to obtain (M0)−1 and use the

matrix-vector product during the solve (Inverse). We see that the Inverse becomes more and more

competitive as the number of processes increases but the factorizing time is still expensive. For

large test cases, with a small dimension and a large number of nodes, the usage of dense solver can

be appropriate otherwise sparse solver are more pertinent. In the airplane test case, the sparse

solvers do not improve as the number of nodes increases. In addition, we have developed and

tested an iterative solver (based on the conjugate gradient method) but it appears to be slower

than the ones presented here and needs 4 and 1 seconds for the solve step using 1 and 24 threads

respectively.
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Figure 3.23: Linear solvers timing for the AirplaneM0 using theAVX − ConfigurationCPU.We parallelize in distributed
memory (MPI) except for the PASTIX-TH solvers where we use sharedmemory parallelization.
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3.7.6 Parallel study

Homogeneous Configurations

We compare the Full-MPI and the Hybrid-MPI/OpenMP implementations to compute the airplane

test case.

SSE − Configuration. We use 4 to 32 nodes and 8 cores per node. Figure 3.24 gives the total

execution time and the parallel efficiency. The efficiency is worthy for both implementations but

in terms of execution time, the Full-MPI is better. Even if the number of processes involved in the

global communications becomes larger because there are 8 MPI processes on each node, there is

no advantage in reducing this number by having one process per node and intra-node parallelism

using threads. Figure 3.25 gives the percentages of time taken by the different operations. The

time spent for the summation decreases as the number of node increases for both implementations.

However, we see that the Hybrid-MPI/OpenMP implementation exhibits more idle time than the

Full-MPI when the number of node increases. In the Hybrid-MPI/OpenMP implementation, some

parts of the code are sequential; the threads share data, they parallelize small operations like

the radiation for instance and the work is balanced statically between threads. In consequence,

there are less MPI-processes in the Hybrid-MPI/OpenMP implementation but the threads are less

balanced, and they have to wait longer in the synchronization/reduction points. Moreover, in the

Hybrid-MPI/OpenMP we do not manage the NUMA effects, and our slices are allocated in a single

block by the master thread and shared by all the threads of the node.
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Figure 3.24: Execution time and parallel efficiency of the airplane simulation for the Full-MPI and the Hybrid-MPI/OpenMP
implementations in Double using 4 to 32 nodes, 8CPU per node and ng = 8 for the SSE− Configuration.

AVX − Configuration. We use 1 to 20 nodes and 24 cores per node. Figure 3.26 gives the time

and the efficiency and Figure 3.27 gives the percentage for each of the operations. As for the

SSE− Configuration, the Hybrid-MPI/OpenMP implementation is slower for the same reasons. In

the percentage, we see that the linear solver is becoming critical when having 20 nodes in the

Full-MPI since it takes half the time.
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Figure 3.25: Percentage of the time taken for the different operations to compute the airplane simulation for the Full-
MPI and the Hybrid-MPI/OpenMP implementations in Double using 4 to 32 nodes, 8CPU per node and ng = 8 for the
SSE− Configuration.
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Figure 3.26: Execution time and parallel efficiency of the airplane simulation for the Full-MPI and the Hybrid-MPI/OpenMP
implementations in Double using 1 to 20 nodes, 24CPU per node and ng = 8 for theAVX− Configuration.
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Figure 3.27: Percentage of the time taken for the different operations to compute the airplane simulation for the Full-
MPI and the Hybrid-MPI/OpenMP implementations in Double using 1 to 20 nodes, 24CPU per node and ng = 8 for the
AVX− Configuration.

Heterogeneous Configurations

We now study the parallel behavior of the application on heterogeneous architecture, first on the

SSE/Tesla− Configuration and secondly on the AVX/Kepler− Configuration.
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SSE/Tesla − Configuration. Figure 3.28a shows the wall time to compute the simulation using 0
to 3 GPUs and 2 to 8 nodes. The data of the problem cannot be hosted by a single node and to

ensure in-core execution we have to start from 2 nodes even if our application can manage out-of-

core simulations. Based on these results, Figure 3.28b shows the speed-up of the GPU versions

against the CPU only version. We recall that the GPU versions use all the CPUs as explained in

Section 3.5.1. For a small number of nodes, the executions with GPUs do not provide a significant

improvement against the CPU only case. This is because GPUs are limited by their memory ca-

pacities, and they cannot hold a large proportion of the data.Since the data are almost divided by

the number of nodes, a small number of nodes means that each of them will need to store a large

amount of data. When a GPU is in charge of an interval that exceeds its memory capacity, it needs

to perform host-to-device copies during the computation. Such copies are slow and drastically de-

crease the efficiency of the GPUs. However, our application must be able to support out-of-core

executions where an entire simulation cannot fit inside the main memory. It is then required to

perform host-to-device or hard-drive to device copies. The balancing algorithm is responsible of

the attributions of the intervals as detailed at the end of this section. The parallel efficiency of the

CPU only version for 8 nodes is 0.78.
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Figure 3.28: Parallel study of the airplane test case from 0 to 3GPUs and 2 to 8 nodes for the SSE/Tesla− Configuration in
Single.

Figure 3.29 presents the details of the main operations of the simulation by giving the percent-

ages of the operations against the complete wall time. We see that the idle time (red) remains low

in most of the cases. It is clear that the solution stage becomes more and more dominant as the

summation is improved. That is due to the low number of unknowns compared to the number of

nodes. In fact, there is no improvement in the time spent in the solution step of the direct solver as

we increase the number of nodes, and MUMPS is taking the same time with 2 or 8 nodes to solve

the system for all the time steps.

We can draw the work balance between workers as shown in Figure 3.30. It shows how the

work is balanced for different work distributions and different numbers of nodes in a single node

for several iterations. We measure the balance by studying the time taken per each worker in

terms of percentage of the total time (which is the sum of the time taken by all the workers). In
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Figure 14: Percentage of time of the different stages of the airplane simulation

for 2 to 8 nodes

is balanced and what percent of the node interval each worker is in charge of.

We remind that the balancing algorithm gives the same number of elements

to each worker for the first iteration. Figure 15a which shows the balancing

for 2 nodes also point out a problem in the limitation of the GPU memory. In

fact, at the first iteration the GPU-worker and the CPU-worker are in charge of

the same number of slices (as shown by the interval of work). But this amount

of slices cannot fit in GPU memory thus the first iteration is very slow for the

GPU-worker which takes 90% of the total time. The GPU-worker needs to load

and copy the slices in its memory. The balancing algorithm tried to balance

the second iteration but this time the GPU-worker has few slices and can store

them in its memory. So the GPU-worker computes its interval extremely fast

compared to the CPU-worker. Such performance differences as in-GPU and out-
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Figure 3.29: Percentage of time of the different stages of the airplane simulation for 2 to 8 nodes for the SSE/Tesla −
Configuration in Single precision.

a perfectly balanced configuration, all the workers take 100/W percent of the time, with W the

number of workers. We see that the balance is improved aer each iteration. The second part

of the figure shows the interval of work per worker. We see the speed-up of the GPU-workers

against the CPU-worker when the work is balanced and what percent of the node interval each

worker is in charge of. We remind that for the first iteration, the balancing algorithm gives the

same number of elements to each worker. Figure 3.30a which shows the balancing for 2 nodes

also points out a problem of the GPU memory limitation. In fact, at the first iteration, the GPU-

worker and the CPU-worker are in charge of the same number of slices (as shown by the interval

of work). However, this amount of slices cannot fit in GPU memory; thus, the first iteration is very

slow for the GPU-worker and it takes 90% of the total time. The GPU-worker needs to load and

copy the slices into its memory. The balancing algorithm tried to balance the second iteration, but

this time the GPU-worker has few slices and can store them in its memory. Therefore, the GPU-

worker computes its interval much faster than the CPU-worker. Such performance differences as

in-GPU and out-of-GPU can lead to unbalanced, or at least not optimally balanced, configurations.

AVX/Kepler−Configuration. The nodes of the AVX/Kepler−Configuration have more GPUs and

the GPUs but also more memory compared to the SSE/Tesla−Configuration nodes. The complete

simulation can be hosted by a single node, and this is why the results start from 1 node up to 5
nodes. Again, in Figure 3.32, we see clearly the memory limit of the GPU bound the speed-up.

With a single GPU per node, we need 5 nodes to have enoughGPUmemory and to have a complete

speed-up. While with 4 GPUs the problem fit in their memory from 2 nodes. We notice that the

executions using 3 nodes and 3 or 4 GPUs have important IO operations such that the summation

stage appears smaller but we have to keep in mind that these results represent the percentage of

time (and not the absolute time). From the percentage results, Figure 3.32, we see that the idle

time remains correct.
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Figure 3.30: Illustration of the work balance for the airplane simulation and three hardware configurations. The goal is to
have equal percentage of time per worker. The CPU-worker is always represented by green color (always at the top of the
plots) and GPU-workers are plotted in blue. The balancing algorithm stops after 15 iterations. The given examples illustrate
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Figure 3.31: Parallel study of the airplane test case from 0 to 4GPUs and 1 to 5 nodes for theAVX/Kepler− Configuration
in Double.

3.7.7 Out-of-core Executions

Our application is able to compute simulations which do not fit in the main memory. However, the

underlying technique has not been optimized; we simply store the slices on the hard-drive memory

and create S/M groups, where S is the complete size of the slices and M the available memory.

During the summation stage, we load each group but one at a time in the main memory without

any allocation (a buffer of the size of the largest group is allocated and reuse). It would be possible
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Figure 14: Percentage of time of the different stages of the airplane simulation

for 2 to 8 nodes

is balanced and what percent of the node interval each worker is in charge of.

We remind that the balancing algorithm gives the same number of elements

to each worker for the first iteration. Figure 15a which shows the balancing

for 2 nodes also point out a problem in the limitation of the GPU memory. In

fact, at the first iteration the GPU-worker and the CPU-worker are in charge of

the same number of slices (as shown by the interval of work). But this amount

of slices cannot fit in GPU memory thus the first iteration is very slow for the

GPU-worker which takes 90% of the total time. The GPU-worker needs to load

and copy the slices in its memory. The balancing algorithm tried to balance

the second iteration but this time the GPU-worker has few slices and can store

them in its memory. So the GPU-worker computes its interval extremely fast

compared to the CPU-worker. Such performance differences as in-GPU and out-
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Figure 3.32: Percentage of time of the different stages of the airplane simulation for 1 to 5 nodes for theAVX/Kepler −
Configuration in Double precision.

to improve themethod by allocating two buffers and by loading and computing concurrently (which

leads to S/M/2 groups).

In Figure 3.33, we show the execution time for different buffer-memory sizes on a cone-sphere

test case. We see that once the slices does not fit in memory, which means that we have more

than one group, the execution time slow-down drastically. When the allowed memory is fixed to

M = 55GB, we have two blocks; one blocks of size 55GB and a second one of size 2GB. Whereas,

if the limit is fixed to M = 35GB, we have one block of size 35GB a second one of size 22GB.
From the results, it seems that the smaller the blocks, and the read from the file, the better are

the performance. Even so, out-of-core capacity opens the possibility to work on small computation

nodes or with large simulations.

... ..
20

.
40

.
60

.
80

.0 .

10,000

.

20,000

.

30,000

.
1

.
1

.

2

.

2

.

2

.

3

.

5

.

Allowed Memory M (GB)

.E
xe
cu
tio

n
T
im

e
(s
)

(a) Execution time, with number of memory parti-
tions in label

... ..
20

.
40

.
60

.
80

.0 .

0.5

.

1

.

Allowed Memory M (GB)

.

Sp
ee
du

p

.

. ..OpenMP

(b) Speedup (T75/TM)

Figure 3.33: Execution time and efficiency for out-of-core cone-sphere simulations for OpenMP implementations in Dou-
ble using 1 nodewith 24CPU and ng = 8 for theAVX − Configuration. The cone-sphere test case C-22468 introduced in
Section 1.2.4, which has 9953 time steps and needs a total memory of 57GBwithRHS = 2.

3.8 Matrix Computation Summary

This chapter describe how our TD-BEM formulation can be efficiently implemented on CPU and

GPU thanks to the reordering of the computation. We show that the we can achieve a high flop-rate
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using advanced optimization on the different architectures and that parallelization is efficient even

if it is more and more limited by the underlying linear solver. The benefit of the GPU is proved

only when the data fit in the GPUs’ memory which happens with a low ratio of the problem size

against the number of nodes/GPUs. However, the resulting application is able to work on most

hardware configurations composed by CPU/GPU thanks to the balancing heuristic.
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4
Parallel Fast Multipole Method

This chapter describes the different parallelization strategies that have been developed for the

generic Fast Multipole Method (FMM). It includes straightforward shared memory approaches us-

ing fork-join or tasks-and-wait models, which are also used as a basis for the hybrid parallelization.

In addition, we introduce the data structure for the tasks-and-dependencies FMM in shared and dis-

tributed memory with the support of a runtime system. For the entire chapter, we consider the use

of Morton indexing and restrict our definition to three dimensions (3D). The related developments

have been incorporated into the ScalFMM library presented in Section 2.3.5.

In Section 2.3.3, we define the FMM algorithm as a method which reduces the number of inter-

actions using an appropriate mathematical kernel to approximate the far-field. Many FMM-based

scientific applications mix the numerical formulations and the FMM algorithm without a straight

border between both layers. However, interleaving the physical problem, the mathematics and the

FMM, which includes the algorithm, the data structures and some parallelization schemes, leads

to complex codes. That is why, we have decided to work on the development and the paralleliza-

tion of the FMM as a generic method and an external module even if our objective is to implement

an FMM kernel for our TD-BEM problem. As a result, the current chapter includes a study of the

FMM algorithm independently of the TD-BEM formulation.

4.1 Sequential Fast Multipole Method

4.1.1 Algorithm

In Section 2.3 we introduce the FMM and its relative operators. We also describe how the FMM

algorithm reduces the complexity by an approximation of the far-field using an appropriate math-

ematical kernel. The FMM algorithm is expressed intuitively if we have an octree data structure

which supports the following operations:

• from a cell c or a leaf lf, the octree proposes a method to get their corresponding Morton
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indexes, and the other way around, with a low complexity ;

• it has an efficient linear access over the cells; for a given level l, the octree provides a method

to iterate on all the cells of the same level in ascending Morton index order ;

• it has an efficient linear access over all the leaves, as it is for the cells, the octree provides a

method to iterate on the leaves in ascending Morton index ;

• from a cell c or its Morton index and the corresponding level, the octree proposes a fast

access to the children and the cells that composed the interaction list ;

• from a leaf lf or its Morton index, the octree provides access to the corresponding direct

neighbors.

The indirection octree from Section 2.3.5 provides all these methods. Moreover, this data struc-

ture manages the empty space/cells, and iterating inside a level of a sparse octree is done with a

low complexity. Using a such data structure allows to write the FMM as in Algorithm 8. The main

function (FMM) calls the operators in the correct order, and the algorithm explicitly shows the

division between the near and the far fields. The proposed algorithm computes first the near-field

(P2P) and then on the far-field interactions, but the reverse order would have been valid too. The

M2L is done at level l, then the data are moved downward by the L2L from l to l+ 1, and later the
M2L at level l + 1 occurs and so on. It is also valid to perform all the M2L at all levels, and then

to do the downward pass from level 2 to h− 1.
In our case, the P2M, the M2M, the L2L and the M2L compute their full interactions. For

example, theM2M takes all the children of a cell to compute the aggregation in the parent, but it is

possible to dissociate these calls and to perform the computation between one parent and its child

at a time. These choices are a matter of underlying optimizations and parallelism as explained in

further sections.

4.2 Shared Memory Parallelization

In this section, we introduce the parallelization schemes based on the fork-join model. These

algorithms can be implemented with OpenMP 3.1. We present formulations based on the OpenMP

standard, but we do not strictly follows the standard in order to make the algorithmsmore intuitive.

4.2.1 parallel-for

In our sequential algorithm (Algorithm 8), the operators work with one cell/leaf at each call. This

sequential implementation is straightforward to parallelize using the parallel-for statement. The

loops are divided among the threads, and there is no possible race condition or memory conflict

between the threads as long as the kernel functions carefully manage the parallel accesses. Algo-

rithm 9 shows the parallelization for theM2L operator with a simple parallel-for but this statement

should be parametrized. In fact, we have to choose how to divide the work between the threads
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Algorithm 8: FMM Sequential Algorithm
function FMM(tree, kernel)

// Near-field
P2P(tree, kernel);
// Far-field
P2M(tree, kernel);
for l = tree.height-2→ 2 do

M2M(tree, kernel, l);
for l = 2→ tree.height-2 do

M2L(tree, kernel, l);
L2L(tree, kernel, l);

M2L(tree, kernel, tree.height-1);
L2P(tree, kernel);

function P2P(tree, kernel)
foreach leaf lf in tree.leaves do

kernel.P2P(lf.targets, lf.sources, tree.getSourceNeighbors(lf.mindex));

function P2M(tree, kernel)
foreach leaf lf in tree.leaves do

kernel.P2M(lf.sources, tree.getCell(lf.mindex).multipole);

function M2M(tree, kernel, level)
foreach cell cl in tree.cells[level] do

kernel.M2M(cl.multipole, tree.getChildren(cl.mindex, level).multipole);

function M2L(tree, kernel, level)
foreach cell cl in level.cells do

kernel.M2L(cl.local, tree.getInteractions(cl.mindex, level).multipole);

function L2L(tree, kernel, level)
foreach cell cl in tree.cells[level] do

kernel.L2L(cl.local, tree.getChildren(cl.mindex, level).local);

function L2P(tree, kernel)
foreach leaf lf in tree.leaves do

kernel.L2P(tree.getCell(lf.mindex).local, lf.targets);

by selecting the appropriate granularities/chunk sizes and schedule (static/dynamic). A dynamic

schedule involves more critical sections, but a static division may lead to unbalanced execution if

the workload is not uniformly distributed. In addition, it is possible to work on the M2L and the

L2L separately, which allows to remove the barriers between the different level for the M2L.

Algorithm 9: FMM Operator using parallel-for (M2L)
function M2L_parfor(tree, kernel, level)

#pragma omp parallel for
foreach cell cl in level.cells do

kernel.M2L(cl.local, tree.getInteractions(cl.mindex, level, Multipole));
// Implicit barrier from omp parallel

The sequential P2P operates on the leaves and their neighbors. If we parallelize this loop,

the threads may access concurrently the same leaves while the P2P modifies both the target cell
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and it neighbors. This happens if the computational kernel is anti-symmetric such that for two

particles i and j we have Fi,j = −Fj,i. In fact, to reduce the computational cost, the P2P computes

only half of the interactions and applies the results to the targets and the sources. We can use

several mutexes or a lock-free mechanism to avoid the memory conflicts between the threads.

However, we use an alternative solution which is known as the spacial decomposition color (or

coloring pattern). We divide the original problem into sub-problems (colors) where no protection

is needed inside these sub-problems (some barriers must be used between the colors). In our

P2P, a color represents the leaves that are separated by two other leaves. As an example, in

one dimension, the colors are the sequence red green blue red green blue... such that with a parallel

loop over one color, the threads modify the leaves (red) and their direct neighbors (green, blue)
without overlapping. In 1D the color is found from the grid index lf.x by lf.xMOD3, and in 3D
by ((lf.xMOD 3) × 3 + (lf.yMOD 3)) × 3 + (lf.zMOD 3). The parallelization of the P2P using

this pattern is shown in Algorithm 10. It is possible to use less than 3D colors if we consider that

the P2P modifies always the same neighbors relatively to the target. In 3D, we can use 18 colors

instead of 27, see [99], if the modified neighbors have always lower tree coordinates than the target

leaf (x× 9+ y× 3+ z < 14).

Algorithm 10: FMM Parallel P2P with color scheme
function P2P(tree, kernel)

foreach Color color in tree.leaves.criticalColors do
#pragma omp parallel for

foreach leaf lf in tree.leaves[color] do
kernel.P2P(lf.sources_targets, tree.getNeighbors(lf.mindex));

4.2.2 tasks-and-wait

The difference between tasks-and-wait and parallel-for models is thin: a parallel-for with a dynamic

scheduling or a parallel-for with static scheduling and a chunk size of N/p give the same parallel

behavior as a tasks-and-wait approach. However, the tasks-and-wait allows for finer synchroniza-

tions because only one thread waits for the tasks to finish while the other ones continue their

execution. In Algorithm 11, we give an example of parallelization where the M2L is based on

the tasks-and-wait but where the other operators still rely on the parallel-for. The algorithm also

provides an equivalent of the M2L_task using parallel-for referenced as M2L_full_parfor with the

nowait keyword to remove the barrier aer the divided loop. The granularity can be parametrized

in both approaches but there are still a lot of barriers between the operators and the levels. For

example, the particles are only used by the P2P and the L2P but no threads are able to start the

P2M while all the others have not finished to work inside the P2P.
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Algorithm 11: FMM tasks-and-wait Algorithm and comparison between M2L_task and
M2L_full_parfor.
function FMM(tree, kernel)

// Near-field
P2P_parfor(tree, kernel);
// Far-field
P2M_parfor(tree, kernel);
for l = tree.height-2→ 2 do

M2M_parfor(tree, kernel, l);
M2L_task(tree, kernel);
for l = 2→ tree.height-2 do

L2L_parfor(tree, kernel, l);
L2P_parfor(tree, kernel);

function M2L_task(tree, kernel)
#pragma omp parallel

#pragma omp single
for l = 2→ tree.height-2 do

foreach cell cl in level.cells do
#pragma omp task
kernel.M2L(cl.local, tree.getInteractions(cl.mindex, level,
Multipole));

// Implicit end of the tasks

function M2L_full_parfor(tree, kernel)
#pragma omp parallel

for l = 2→ tree.height-2 do
#pragma omp for schedule(dynamic,1) nowait

foreach cell cl in level.cells do
kernel.M2L(cl.local, tree.getInteractions(cl.mindex, level,
Multipole));

// No barrier, the threads go to the next loop (nowait)

// Implicit wait

4.2.3 Section tasks-and-wait

The near and far fields are independent, and we can compute them concurrently (except for the

L2P and the P2P because they both update the particles). Using the tasks-and-wait paradigm, we

can divide the FMM in two independent execution paths as written in Algorithm 12. One thread

inserts the task for the near-field and ensures the coherency using barriers where required, while

another thread inserts the tasks for the far-field and ensures the correct execution using barriers.

The other threads pick tasks from the near-field or the far-field, and we expect to reduce the idle

time until one of the two sequences is over. At the end, the L2P is used as a reduction operation

between the near and far fields, but it must start only when both previous sections are over.

Themain drawback of this implementation comes from the lack of priority system in theOpenMP

standard *. Therefore, the execution is tied to the underlying OpenMP implementation (the tasks

may be stored in FIFO or LIFO fashion). There are still a lot of synchronizations inside the se-

*The OpenMP standard will introduce priorities in its revision 4.5.
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quences, and it would certainly be a benefit to have finer dependencies. For example, in theM2M
from Algorithm 12, the taskwait ensures that the work at level l+ 1 must be over to work at level

l. This level-to-level dependency can be replaced by dependencies between cells such we compute

the M2M between a cell and its children as soon as the children are ready. Such approaches are

presented in Section 4.4.

Algorithm 12: FMM Section tasks-and-wait Algorithm
function FMM(tree, kernel)

#pragma omp parallel
#pragma omp single nowait

// Near-field
P2P_task(tree, kernel);

#pragma omp single nowait
// Far-field
P2M_task(tree, kernel);
for l = tree.height-2→ 2 do

M2M_task(tree, kernel, l);
M2L_task(tree, kernel);
for l = 2→ tree.height-2 do

L2L_task(tree, kernel, l);

// Merge
L2P_parfor(tree, kernel);

function M2M_task(tree, kernel)
foreach cell cl in tree.cells[level] do

#pragma omp task kernel.M2M(cl.multipole, tree.getChildren(cl.mindex,
level).multipole);

#pragma omp taskwait

4.3 Hybrid Parallelization (MPI/OpenMP)

4.3.1 Distributed Memory (Full-MPI)

The communication between the computational nodes is done using theMessage Passing Interface

(MPI), and we use the term process to name anMPI process. InMPI, each process has an individual

rank, and we use the terms le and right processes relatively to process k to denote the processes

that have lower or greater ranks than k.
In our distributed implementation, we do not duplicate the entire octree over the nodes; for

large test cases, a complete octree may not fit into the memory of a single node. On the other

hand, we have to divide our octree but we also need to keep a good data locality inside each node

and a low communication cost between the nodes. In Section 2.3.4, we show that the Morton

and Hilbert indexing have good properties for a dense octree. More precisely, the model study

the bottomM2L and shows that the number of messages, the size of the messages and the locality

are much better compared to a linear indexing. The simplicity to compute the Morton indexing,

compared to the Hilbert indexing, and its intrinsic hierarchical structure make it very convenient

and commonly used in the FMM.
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To distribute the octree, we divide the global Morton interval at the leaf level (hl) between all the
processes: each process pi is in charge of all the particles included between the Morton indexes

MS
i (hl) and ME

i (hl). The particles are distributed in an increasing order for both the process rank

and the Morton index, and for pi < pj we haveMS
i (hl) ≤ ME

i (hl) < MS
j (hl) ≤ ME

j (hl). This relation
constrains the leaves to be unique; no particles with the sameMorton index are hosted by different

processes, and in the case of a dense octree we haveME
i (hl) = MS

i+1(hl)− 1, with i < np− 1 where
np is the number of processes. The limited memory constrains the distribution of the particles and

the construction of the octree which are done in four steps.

In the first stage, each process loads N/np of the total simulation particles and computes their

corresponding Morton indexes. Then, the particles are sorted among all the processes using a

parallel sort (without merging on a single node). In our current implementation, we use a parallel

Quicksort as presented in Appendix D.3. Aer these stages, the particles are sorted in Morton

indexing order among all the processes but some leaves are potentially split over several processes

and the distribution is possibly strongly unbalanced due to the sorting algorithm. The next steps

tackle these problems, all the processes communicate to check at the extremities of their neigh-

boring processes and merge the leaves appropriately. During the last step, the processes balance

the leaves using a chosen strategy as for example assigning to each process the same number of

particles or the same number of leaves. Aer this loading procedure, the processes build their

individual local octree over their distinct intervals MS
i (hl) ≤ ME

i (hl).
A local octree is similar to the one used in shared memory parallelization: it is an octree by

indirection with the particles hosted in the leaves and with the cells created from the leaves to the

root over non empty areas. While the leaves are unique among all the processes, this is not the

case for the cells above (positioned at levels < hl). This is illustrated in Figure 4.1, the parents of

the leaves and the upper cells may exist on several processes and for example the root exists on all

the processes. These duplicate cells are called the join-cells because they are located on the extrem-

ities/borders of the Morton intervals of the processes. They should not be confused with the ghost

cells that are located on the spatial boundary between the cells hosted by the different processes.

This extends the previous relation for upper levels by MS
i (l) ≤ ME

i (l) ≤ MS
j (l) ≤ ME

j (l) for i < j
and l < hl. Moreover, we know the Morton interval of the upper level of a process by performing

a bit shi operation: at level l process pi covers from MS
i (l) = bits_right_shift(MS

i (hl),D× (hl − l))
to ME

i (l) = bits_right_shift(ME
i (hl),D× (hl − l)).

We do not duplicate the octree, and we do not construct an octree representation which tells

which cells exist on each process because we consider that it is not needed if the octree is divided

following the global index. However, each process knows the working intervals of the others at the

leaf level. From this information, the processes only know what others are covering but they do

not know which cells exist or not inside these intervals.

The join-cells exist in the octrees of several nodes, and we decide that it is the process with the

lowest rank among the owners of a join-cell that manages it. By looking again at Figure 4.1, P0

is responsible of A and B and P1 is responsible of C. Therefore, for the upper levels this defines
a difference between the covering interval [MS;ME] (the existing cells) and the working interval
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Figure 4.1: DistributedOctree among 3 processes each with two leaves andwith the join-cells: A,B andC. Covering inter-
vals include:M0 = {{A}, {B}, {E,F}},M1 = {{A}, {B,C}, {G,H}},M2 = {{A}, {C,D}, {I, J}}. Working intervals
include:W0 = {{A}, {B}, {E,F}},W1 = {{}, {C}, {G,H}},W2 = {{}, {D}, {I, J}}.

[WS;WE] (the cells to manage). The processes are responsible for the cells inside their working

intervals and thus they may need to skip the join-cells that are inside their covering intervals. The

computation of theworking interval is presented in Algorithm 13where the beginning of an interval

is the maximum of the covering interval and the end of the covering interval of the le process.

Algorithm 13: Working interval per process with output WS (W[:][:][0]) and WE (W[:][:][1]).
If a process p has W[l][p][0] > W[l][p][1] then it does not have work to do at level l and above.
Data: h the height of the tree, np the number of processes
function FindWorkingIntervals(Morton Index myInterval[2]) : W[h][np][2]

// All exchange their intervals at the leaf level (hl)
W:

:(hl) = send_receive_bottom_interval(myInterval);
for l = h-2→ 0 do

// Compute for p0 at level l
WS

0(l) = bits_right_shi(WS
0(l+ 1), 3);

WE
0 (l) = bits_right_shi(WE

0 (l+ 1), 3);
// Compute for others with their left process as limit
for process = 1→ np-1 do

WS
process(l) = Max(bits_right_shi(WS

process(l+ 1), 3), WE
process−1(l)+1);

WE
process(l) = bits_right_shi(WE

process(l+ 1), 3);

We present the distributed operators between level, which includes the P2M, theM2M, the L2L
and the L2P, and the transfer operators (P2P and M2L).

Transfer and direct passes. We process the P2P and the M2L in the similarly because they both

modify local data and need remote data. In the current description, we introduce the algorithm

for the M2L but it also applies to the P2P by reducing the interaction list of the leaves.

The M2L operator is computed in two distinct steps categorized as local and distributed. In the

local step, each process computes theM2L between the cells it hosts without any communication.

Thanks to the Morton indexing we expect that only few interactions close to the boundaries are

missing aer this stage.

In the distributed step, the processes find the potential missing interactions, exchange the cor-

responding cells and complete the M2L. To find the missing interactions, a process iterates on its

local cells and computes their interaction lists where each list is an array of 189Morton indexes as
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in the usual FMM. Then, for each of these indexes, the process finds the corresponding working

interval and the potential owner of the remote cell. If an index is not included in any interval then

it guarantees that the corresponding cell does not exist. The process sends all the cells which have

at least one remote interaction to the remote cell owners, and it expects to receive the remote

cells from them. For example, let have the process pi which computes the Morton indexes of the

interaction list I of the cell cl. By iterating on I, it finds that one of this indexes m is not inside its

working interval but is in the working interval of the process pj. It means that pi must send cl to pj
and mark cl as incomplete. The process pi does not know if the remote cell of index m exists on pj
but it considers it does. If the cell of index m exists, then pj will also find out that pi needs this cell
of index m and will proceed the same way. Once all the data have been exchanged, the distributed

stage ends by the computation of the operators between the marked cells and the received ones.

The amount of exchanged data is driven by the quality of the indexing, and we expect it to be

low thanks to the Morton indexing qualities. However, if a process hasNleaves leaves andNcells cells,

then the number of communications is bounded by 26×Nleaves and 189×Ncells for the P2P and the

M2L respectively. In addition, if the length of the working interval is Wi(l) = WE
i (l)−WS

i (l) + 1,
the number of received is bounded by 26 × Wi(l) and 189 × Wi(l) for the P2P (l = hl) and the

M2L (l ≤ hl).

Upward and downward passes. The P2M and L2P are done without any communications be-

cause the leaves and the corresponding cells at the leaf level are hosted by the same processes.

However, the M2M and the L2L require communications from the reduction of the covering in-

tervals to the working intervals; as shown in Figure 4.1, during theM2M the process P1 sends G to

the process P0 and the process P2 sends I to the process P1 while the inverse is necessary during
the L2L, P0 sends B to P1 and P1 sends C to P2. The M2M and the L2L can be described in two

distinct stages which are applied level per level.

In the localM2M/L2L a process performs the work between the cells in its working interval and

their children. However, before moving to the next level, it may send or receive cells at the borders

which is done during the distributed step. We remind that a process only knows the working and

covering intervals of the others, and using this information we define three functions:

• proc_has_work(level l, process p): tells if a process p is in charge of at least one cell at level l.
The function returns true if WE

p (l) − WS
p(l) ≥ 1. If a process does not have work to do at

level l then it is also true for all the upper level < l

• proc_covers_right(process r, level l, process p): tells if a process p has a join-cell with process r
(r < p) i.e. if p has at least one child of the last cell of the working interval of process r at level
l. This function returns true if bits_right_shift(WE

r (l+1),D) == bits_right_shift(WS
p(l+1),D)

• proc_covers_left(process r, level l, process p): tells if a process p has a join-cell with process r
(p < r) i.e. if r has at least one child of the last cell of p. This function returns true if

bits_right_shift(WE
p (l+ 1),D) == bits_right_shift(WS

r (l+ 1),D).
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Using these functions, the M2M is written as in Algorithm 14. Each process knows what it has

to send or to receive by looking at the working and covering intervals of the others in the current

and the lower levels. The communications are bounded and during the upward pass at a given

level l, one process pr sends a maximum of 7 cells from level l + 1 to only to one process pj. This
also means that if there exists a process x with j < x < r this one does not have work to do at

level l and above. From the receiver point of view, a process r obtains a maximum of 7 cells from
a maximum of 7 distinct processes. Except for the processes at the extremities with ranks 0 and

np− 1, any process might send a cell at level l if it has work at level l+ 1 and receives if it has work
at level l.

Algorithm 14: Send/Receive in distributed M2M for all levels.
Data: h the height of the tree
function M2M_comm()

idx_send_to = my_rank-1;
first_idx_recv = my_rank+1;
for l = h-2→ 2 do

if proc_has_work(l+1, my_rank) == FALSE then
// No possible contributions
break;

// Find first left process with work at current level
while idx_send_to ≥ 0 AND proc_has_work(l, idx_send_to) == FALSE do

idx_send_to = idx_send_to - 1;

if idx_send_to ≥ 0 AND proc_covers_le(my_rank, l, idx_send_to) then
send first cells of level l+ 1 that have WE

idx_send_to(l) as parent and which are inside my_rank working
interval WS

my_rank(l+ 1) to process idx_send_to

// Find first right process with work at lower level
while first_idx_recv < np AND proc_has_work(l+1, first_idx_recv) == FALSE do

first_idx_recv = first_idx_recv + 1;

if first_idx_recv < np AND proc_covers_right(my_rank, l, first_idx_recv) then
receive from first_idx_recv at most 7 children of WE

my_rank(l+ 1) while first_idx_recv < np AND
proc_has_work(l, first_idx_recv) == FALSE do

first_idx_recv = first_idx_recv + 1;
if first_idx_recv < np AND proc_has_work(l+1, first_idx_recv) AND proc_covers_right(my_rank,
l, first_idx_recv) then

receive from first_idx_recv at most 7 children of WE
my_rank(l+ 1)

A similar approach is used for the L2L but this time the emitters become receivers and the

receivers become emitters. In addition, each process sends a maximum of one cell (the join-cell)

but potentially to 7 processes which include all the processes that have at least a child of the join-cell
inside their working interval at level l+ 1.

4.3.2 Communication Hiding Strategy

The only difference between the shared memory strategies, presented in Section 4.2, and the local

steps of the hybrid distributed memory algorithm is that the computation is done on the working

intervals and not the covering intervals. In addition to the local computation, there is a commu-
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nication stage and a second computation stage which includes the remote interactions. Mixing

OpenMP threads and MPI calls should be done carefully.

In our implementation, one thread is responsible for all the communications while the others

are available for computation. This strategy is shown in Algorithm 15 for the P2P and the M2M
but the M2L and the L2L are implemented similarly. A single thread first manages the communi-

cations while the others proceed the local computation. If the communications are over before the

computation, the communication thread joins the others and participates to the work. Otherwise,

all the threads meet at the barrier which is crossed once the communications and the local work

are over. Finally, all the threads are involved in the remote computation using the received data.

Our communication thread posts non-blocking sends and receives (MPI ISend/IRecv) and then

waits for completion (MPI waitall) ensuring that once it leaves its single section, the communica-

tions are finished. With this approach, we do not interleave the near and far-field but it would have

been possible with a multi-thread MPI support and using two communication threads and more

memory.

Algorithm 15: FMM - Communication hiding examples
function P2P_distr(tree, kernel)

#pragma omp parallel
#pragma omp master // nowait

// Send/Receive non-blocking with a waitall
received_leaves = exchange_leaves(tree);

#pragma omp single // wait
// Local P2P
P2P_task(tree, kernel);

#pragma omp single
// P2P using received data
P2P_task_distributed(tree, kernel, received_leaves);

function M2M_distr(tree, kernel)
for l = h-2→ 2 do

#pragma omp parallel
#pragma omp master // nowait

// Send/Receive as in Algorithm 14 non-blocking with a waitall
received_cells = exchange_cell_M2M(tree, l);

#pragma omp single // wait
// Local M2M
M2M_task(tree, kernel);

#pragma omp single
// M2M using received data
M2M_task_distributed(tree, kernel, received_cells);

4.4 Tasks-and-Dependencies Parallelization

The presented strategies in Section 4.2 suffer from a poor parallelism expression coming from

extra-constraints. Having a barrier or a task-wait between two levels means that to work on any

cell on a given level all the work on the previous level has to be over. It appears interesting to have
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finer dependencies to relax some parallelism and study the potential gain. Moreover, a parallel-for

is appropriate on shared memory, but it is difficult to incorporate accelerators with this type of

fork-join approaches.

4.4.1 FMM Direct Acyclic Graph (DAG)

To simplify our description, we use the term DAG to represents the tasks and their dependencies

even if it is not a direct acyclic graph but more a extended graph with advanced features. In

Figure 4.2 we present a DAG for a given FMM problem, but it is not an execution DAG because

it includes commutative operations that cannot be symbolized with a direct acyclic graph. In the

FMMmost operators are commutative because they represent an aggregation of information (plus-

equal), and the given graph explicitly show these relations. During the execution of this graph,

different choices must be done to decide in which order to tasks are computed.
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Figure 4.2: FMMpseudo-DAG in 2D for a height h = 4. The circles show how the information transit from the leaves to
impact all the other leaves. The+ symbolized the commutativity of the operation. The bar | represent commutative access
to the same data.

The commutative property is clear between operators; the M2L and the L2L update the local

parts of the cells, and the L2P and the P2P update the particles. However, the operators are also

commutative internally. It is possible to compute theM2M between a parent and its children in any

order. Similarly, for theM2L, the interaction list can be proceed in any order, and it is even possible
to compute someM2L interactions, then to apply the L2L, and to finish by the remainingM2L. In
the fork-join approaches, these operations are not dissociated, and aM2M implies one parent and

all its children for example. All these choices lead to different executions, andwe present twoDAGs

where we dissociate or not the operators in Figure 4.3a and Figure 4.3b. If the commutativity is

supported, the dissociation of the operators gives more parallelism but reduces the granularity. On

the other hand, if the commutativity is not supported, dissociating the operations does not increase

the parallelism because a hard order is created during the task insertion.

The management of the commutative expression is not easy to implement inside a runtime sys-

tem because it leads to more complex dependencies, and the final DAG is generated on the fly

during the execution. Figure 4.4 shows an execution DAG with dissociated operators and without

the expression of the commutativity. We see that it creates extra dependencies compared to the

previous graphs.

93



P2M

P2M

P2M

P2M

M2M

M2M

M2L

L2L

L2P

L2P

L2P

L2P

P2P

P2P

P2P

M2M

M2L

M2L

L2L

L2L

l : 3  2→

l : 3  2→

l : 3  2→

l : 2  3→

l : 2  3→

l : 2  3→

l : 2

l : 3

l : 3

M2L

l : 2 OR

OR

OR

OR
OR

OR

M2L

l : 2

(a)Complete operators

P2M

P2M

P2M

P2M

M2M

M2M

M2L

L2L

L2P

L2P

L2P

L2P

P2P

P2P

P2P

M2M

M2L

M2L

L2L

L2L

l : 3  2→

l : 3  2→

l : 3  2→

l : 2  3→

l : 2  3→

l : 2  3→

l : 2

l : 3

l : 3

M2L

l : 2
OR

OR

OR

OR
OR

OR

M2L

l : 2

M2M

l : 3  2→
L2L

l : 2  3→

OROR

M2L

l : 2

(b)Dissociate operators

Figure 4.3: FMMDAGwith commutative. The commutative are expressed by theORwhichmeans that several task are
modifying the same data but that the order is not important.
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Figure 4.4: FMMDAGwithout commutative andwith dissociate operators. Dashed edges represent meaningless informa-
tion that should be removed using transitive reduction (TR).

4.4.2 Tasks-and-Dependencies FMM

We present in Section 2.2.1 the advantages of using a data-flow declaration to decompose a prob-

lem into tasks. In our presentation, we use OpenMP 4 task depend statements to express our

data/tasks dependencies, but the approach is valid with any other runtime. However, at the time

of writing, OpenMP does not support the commutativity expression and the FMM DAG is finally

the one presented in Figure 4.5. Therefore, the order of insertion of the task is critical and directly

impacts the DAG. Without the commutative propriety, it is important to insert the P2P tasks be-

fore the L2P otherwise the near-field is not be mixed with the far-field. A similar choice has to be

made to choose whether the M2L or the L2L modify the local part of the cells first.

Starting from the task-based fork-join algorithm, we have to specify all the data access modes

that each task has on its parameters. On the other hand, we remove the barriers because the

runtime is in charge of the coherency. The resulting algorithm is presented in Algorithm 16 where

a single thread inserts all the tasks. We make the choice not to dissociate the operators; this choice

increases the granularity of the tasks but also increases the number of dependencies. As a result,
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Figure 4.5: FMMDAGwithout commutative and not dissociate operator. We decide to insert theM2L at level l before the
L2L from l− 1 to l and to insert theP2P before theL2P.

a M2L has up to 189+ 1 dependencies, a M2M/L2L up to 8+ 1 and a P2P up to 26+ 1. In our

pseudo-code, we hid this large and variable number of dependencies but in the real implementation

we need to use different pragma statements for each possibility. Finally, with OpenMP we cannot

orient the execution using priorities.

Algorithm 16: FMM TaskDep Algorithm
function FMM(tree, kernel)

#pragma omp parallel
#pragma omp single

// Near-field
P2P_taskdep(tree, kernel);
// Far-field
P2M_taskdep(tree, kernel);
for l = tree.height-2→ 2 do

M2M_taskdep(tree, kernel, l);
for l = 2→ tree.height-1 do

M2L_taskdep(tree, kernel, l);
for l = 2→ tree.height-2 do

L2L_taskdep(tree, kernel, l);
// Merge
L2P_taskdep(tree, kernel);
#pragma omp taskwaits

function M2M_taskdep(tree, kernel, level)
foreach cell cl in tree.cells[level] do

#pragma omp task depend(inout:cl.multipole) depend(in:tree.getChildren(cl.mindex, level).multipole)
kernel.M2M(cl.multipole, tree.getChildren(cl.mindex, level));

function M2L_taskdep(tree, kernel, level)
foreach cell cl in level.cells do

#pragma omp task depend(inout:cl.local) depend(in:tree.getInteractions(cl.mindex, level).multipole)
kernel.M2L(cl.local, tree.getInteractions(cl.mindex, level, Multipole));
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FMM Critical Path

The bottleneck of the FMM comes from reduction of the workload at the top of the tree and the

downward pass. For example, in the dense FMM the number of cells is divided by 8 as we go

up in the tree, and depending on the kernels the work is also divided by the same coefficient. In

consequence, the amount of parallelism reduces drastically at the top, and the upper levels must

be moved downward by the L2L to end the far-field. Therefore, while the P2M tasks are relaxing

potential M2L (at the leaf level) and M2M from h − 1 to h − 2, it is important to ensure that the

M2M is proceed first. For the same reason, the M2L at the top are more critical than the ones at

the leaf level. Of course, using tasks-and-dependencies, theM2L at the leaf level are here to ensure

that no thread remains idle, but it appears clearly that the execution path is important.

Priorities let orient the execution by deciding which tasks should be computed first among all

the available/ready tasks. A possible set of priorities is given by the following order: P2M, M2M,

M2L above leaf level, L2L, large P2P,M2L at the leaf level, L2P and small P2P. If the underlying
priority system supports numerous values, it is possible to give more precise priorities. For exam-

ple, for the M2L above the leaf level, we may use h − 4 priorities to assign one priority per level

(from level 2 to h− 2).

Reduction Operation/Access Mode

In Section 2.2.2, we explain why the commute mode may constrict the parallelism. In our FMM

algorithm, any commute access can be replaced by a reduction and this leads to new execution DAG.

However, the overhead of the commute from the data replication might lead to poor performance.

Therefore, the possible benefit of this mode depends on both the problem and the runtime system

implementation.

4.4.3 Group-Tree Data Structure

The management of the dependencies makes the tasks-and-dependencies model more expensive

than the fork-join approaches. The cost is decomposed in a static cost and a variable cost de-

pending on the number of tasks and data dependencies.Therefore, it is interesting to increase the

granularity of the tasks to reduce the static cost relatively to the task cost, and to reduce the vari-

able cost by reducing the number of task and data dependencies. In a different context, it improves

the granularity of the tasks and the number of data movements that are important issue with the

accelerator devices.

We propose to use a group-tree data structure as shown in Figure 4.6. Starting from an usual

octree, we aggregate ng leaves or cells together and call such a block a group. It divides the number

of data managed by the runtime by a factor ng. We expect also to reduce the number of dependen-

cies by the same factor, but the theoretical worst case has potentially even more dependencies: a

group of ng cells could need up to 189× ng groups for theM2L. The scalar dependencies are then
replaced by group dependencies: if an operation has a dependency on a cell cl, it is replaced by a

dependency on the group that contains cl.

96



Figure 4.6: Group-tree with ng = 3. The ng contiguous existing cells/leaves belong to the same group.

Group-Tree Implementation

In this section we describe our implementation of a group-tree. We split the symbolic, multipole

and local parts in different block of data. This allows to express the dependencies on the different

parts of the cells/leaves. We store one triple per group with one linked list per level as in Figure 4.7.
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Downard/Local data C

Symbolic data C
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Symbolic data C
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Symbolic data P

Downard data P
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Figure 4.7: A group-tree where the symbolic, multipole and local data are allocated in separatememory blocks. We store
the blocks with h linked lists (one per level) with 3 data pointers per list-node for the cells (C) and 2 data pointers per list-
node for the particles (P).

The particle-group symbolic block and the cell-group symbolic block are similar. They are both

composed of the number of leaves/cells, the Morton indexes of the first and last leaves/cells and

the Morton indexes of all the existing leaves/cells included in the block. An example of symbolic

block is shown in Figure 4.8 for a group of cells and in Figure 4.9 for a group of particles. For

a group of cells, the multipole and local data blocks are usually an array of floating point values.

If we have to store m and l values for the multipole and local parts of a cell, then the blocks are

arrays of size ng ×m and ng × l, where ng is the blocking parameter. Therefore, the multipole data

of the ith cell of a group is accessed by a direct indexing multipole[i × m]. The data block for the

particles contains the successive vectors of the leaves that are included in the group. To access the

potential values of the jth particles of the ith leaf of a group, we write potential[offset[i] + j]. In the

case of a dense octree, the cells included in a group have consecutive Morton indexes and if the

first cell has index f, then the block includes the Morton interval [f; f+ng−1]. However, in a sparse
tree, the Morton interval covered by a group is much higher than ng and gives ng << l − f, with
l the Morton index of the last cell of the block. We call the degree of filling of a group the ratio

ng/(l− f+ 1).

Complexities. The group-tree is designed to have an efficient linear access. Accessing the ele-

ments of a group consecutively is constant and so iterating on all the leaves/cells of a group has a
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complexity of O(ng). We store our group inside a linked list which lead to a linear complexity to

iterate on the elements. Finding a cell is more expensive: we first seek the corresponding group

with a cost of O(Nl/ng), where Nl is the number of cells at level l. Seeking a cell inside a block is

done using binary search in O(logng). This complexity could be reduced by using a search/binary

tree above the groups but we almost never ask for a cell directly in our algorithm.

Group-Tree Construction

The group-tree is easy to construct with a bottom to topmethod. We start by computing theMorton

indexes of the particles and we sort them in Morton increasing order. Then, we iterate and create

a group of leaves for each ng different Morton indexes. We proceed similarly, level by level, to

create the parent blocks.

Sorting the particles has a O(NplogNp) complexity with Np the number of particles. Creating

the groups at the leaf level has a linear complexity of O(Np) in time and O(ng) in space. At level l,
generating the cell groups has a complexity proportional to the number of cells of the lower level

O(Nl+1).

Group-Tree Extensions

We propose two extensions to our group-tree for special classes of problems. In some FMM appli-

cations, the cells or the leaves may have different sizes. In these cases, we use two extra arrays in

the symbolic data block to save the sizes and the offsets of the elements.

In addition, it exists some FMM kernels (i. e. in acoustic or oscillatory kernels) which have

operators that become more expensive as we go up in the tree. If we keep the same group size

per level, the cost of the tasks decreases as we go up in the tree. We introduce a dynamic ng to
have one upper group by child group. Therefore, for instance, if at level l+ 1 we have two groups
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that cover the Morton index intervals [gs1, ge1] and [gs2, ge2]. We create a first parent group that covers

[parent(gs1), parent(ge1)] and if needed a second parent block that covers [Max(parent(gs2), parent(ge1)+
1), parent(ge2)].

4.4.4 Task-Based with a Group-Tree

In this section, we describe the FMM operators based on the group data structure.

Particles-cells operations: P2M/L2P. From our group-tree definition, the groups of particles at

the leaf level and the groups of cells have the same elements. The groups of particles cover ng
leaves whereas the groups of cells cover ng cells, and there is direct matching between this two

kind of groups.To compute the P2M and the L2P, we iterate on the groups of particles and the

groups of cells at the leaf level. For each pair of groups, we then iterate linearly on the existing

element in Morton index increasing order to apply the operator to the leaf and the corresponding

cell. Therefore, it is a linear complexity in the linked list and inside the groups.

Level to level operations: M2M/L2L. Each group located above the leaf level has between 1 to
9 children groups if the group factor ng is the same at all levels. Therefore, we iterate on the

parent level and the children level at the same time. We increment the iterator to access all pairs

of parent/children groups and we call the appropriate operator. Inside the operators, we iterate

linearly on the parents and the corresponding children. The first element has to be found by

dichotomy in O(logng) but then the complexity is linear. To know the elements to compute we

have to use the Morton index intervals. For a parent group covering the interval [gs1, ge1] and a child
group covering [gs2, ge2], we apply the operator from parent with indexMax(gs1, parent(gs2)) to parent
of index Min(ge2, parent(ge2)).

Transfer operations: M2L/P2P. The transfer operations involve two kinds of computations: the

inner operation computes the interactions inside a group and the outer operation computes the

interactions between groups. For the inner computation, we compute the interaction list for each

element on the fly and we find the Morton indexes that are included in the group. We remind that

finding a cell in a group has a complexity of log(ng), so the total complexity is O(ng × 189× logng)
for the M2L and O(ng × 26 × logng) for the P2P. For the outer computation, we need to store

the interactions that each group has with the others, we call the list of interactions between two

groups the interactions table. This table tells where the elements are located in the groups, it gives

their Morton indexes and the relative position of each interaction which is a value between 0 and

342 for the M2L ([−3; +3]× D) or 0 and 26 for the P2P ([−1; +1]× D). The outer computation

between two groups is done by a single thread in a task and thus there is no race condition or

critical section. Figure 4.10 shows the different operators and their data access mode.

Building the interaction tables. To construct the interaction tables, we first iterate through the

elements of a group and compute their interaction lists. Then, we sort all the interactions of the
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Figure 4.10: Data accesses for the Group data structure. R stands for read andRW for read-write.

group based on the Morton indexes of the external elements. Finally, we divide the array to match

the different existing groups. These operations are easily parallelized using the fork-join models,

but it would be nice to parallelized them using tasks and dependencies and to insert them in the

DAG.

4.5 Distributed Tasks-and-Dependencies

The first step consists in distributed the data among all the processes as in the Hybrid Open-

MP/MPI implementation presented in Section 4.3. Each process hosts the particles inside a Mor-

ton index interval and create its local group-tree. The processes exchange the information of their

groups of elements; each process has a data structure which tells what groups exist on the other

processes and what Morton intervals they cover but not if a cell exists inside a remote group. The

DAG of the distributed FMM is shown in Figure 4.11 where the dependencies between the pro-

cesses have been replaced by sends/receives. A send is a task that performs a read on the data and

a receive is a task that performs a write.
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Figure 4.11: FMMDAG in 2Dwith a tree height h = 4. The communications are shown byR (read/send) andW (write/re-
ceive).

In our implementation we use StarPU-MPI introduced in Section 2.2.3. During a preprocessing

stage, we find which groups should be sent to or received from which processes and we post all
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the receives with a StarPU-MPI receive-detached function. Then during the FMM computation,

we post the sends using a StarPU-MPI send detached function.

4.6 Enabling Accelerators in Runtime-Based FMM

To incorporate accelerators in an application that is based on StarPU we define one function

pointer per device/processing unit (results are not shown in the current study). StarPU detects and

initializes the device according to the user requests and manages the data movements between the

host and the device ensuring the data coherency. In terms of implementation, we must use plain

old data (POD) to allow StarPU move/duplicate the memory blocks (POD are raw data without

pointers). In addition, we have to create the operator kernels for the different target architectures.

4.7 Particle Simulation Parallel Study

To illustrate the behavior of the different parallelization strategies, we present parallel efficiency and

speedup results in shared and distributed memory. We compute interactions between particles for

the 1/r kernel and the far-field is approximated by a Legendre expansion with spherical harmonics.

This kernel is accelerated by rotation as described in [100; 101]. We consider an expansion of order

5which gives an accuracy around 10−3. We test two different distributions; an uniform distribution

inside a cube (uniform) and a non uniform distribution on the surface of an ellipse (non− uniform)
illustrated by Figure 4.12a and Figure 4.12b respectively. The nodes are composed by 2 Dodeca-

core Haswell Intel® Xeon® E5-2680 at 2, 50GHz and 128GB (DDR4) of shared memory. We use

Gcc 4.9.2 and Openmpi 1.8.4.

(a)Cube (uniform) (b) Ellipsoid (non− uniform)

Figure 4.12: Tests cases Particles distributions.

4.7.1 Shared Memory Parallelization

We compare the strategies for different number of particles for the uniform distribution in Fig-

ure 4.13 and the non-uniform distribution in Figure 4.14. The strategies are described in the

following paragraphs.

Classical approaches
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• parallel-for. This strategy is presented in Section 4.2.1 where each operator is divided among

the threads with a parallel-for. It is based on the Gcc OpenMP implementation with a chunk

size of 10 and a dynamic schedule.

• Section tasks-and-wait. In this strategy, we mix the near and far fields with a two task-sources

pattern as presented in Section 4.2.3. It is based on the Gcc OpenMP implementation and

uses a chunk size of 1.
• parallel-forBalanced. Herewe extend the approach from parallel-for presented in Section 4.2.1

with a different division of the work. We divide the loops between the threads by balancing

the workload. We use a loop static schedule and using a greedy algorithm to allow each

thread to compute about the same number of interactions. It is based on the Gcc OpenMP

implementation.

• tasks-and-dependencies. This is a single granularity expression of the FMM as described in

Section 4.4.2 (there is no group-tree). It is executed over GCC OpenMP 4 implementation

and therefore there is no support of the commutative or reduction modes. The M2L at a

level l are inserted before the L2L from l− 1 to l and the P2P are inserted before the L2P.

Tasks-and-dependencies approaches

• GT OpenMP-4. This implementation uses a group-tree with a tasks-and-dependencies as pre-

sented in Section4.4.4 over the GCC OpenMP 4 implementation. That is why, there is no

commutative or reduction operations in this implementation.

• GT StarPU (NC-NR). This implementation is the same as theGTOpenMP-4 but using StarPU

and priorities. Similarly, there is no commutative (NC) and no reduction (NR) operation.

• GT StarPU (NR). This strategy extends the GT StarPU (NC-NR), and uses the commutative

operations but not the reduction (NR).

• GT StarPU (commutative L2L). In this configuration, we use the commutative and the re-

duction operations. The commutativity is used everywhere even for the L2L from h − 2 to

h− 1.
• GT StarPU. In this configuration, we use the commutative and the reduction operation, but

we replace the data mode access of the L2L from h−2 to h−1 by a read-write access instead
of a commutative access. It means that the M2L at the leaf level will start once the work in

the top of tree is over (locally).

Classic parallelizations For both distributions, see Figure 4.13 and Figure 4.14, the tasks-and-

dependencies implementation is always the slower one. Even in sequential, this implementation

is slower whereas the other are roughly similar, and the difference increases with the number of

threads which gives us an important information; the current OpenMP-4 GCC implementation of

the tasks-and-dependencies module is to expensive in terms of dependencies/tasks management.

It is true that this implementation is difficult for the runtime system because there are up to 189+1
dependencies per task and the granularity is reduced to a single element. Moreover, there is not
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commutative expression with OpenMP and the resulting parallelism is highly constrained.

The parallel-for Balanced implementation is competitive in all uniform cases, and the fact that

we have a static division of the work looks to be advantageous in the small test cases where the

synchronization between threads should be avoid. On the other hand, for the larger non-uniform

distribution from Figure 4.14h, the static distribution of the work is not optimal and it makes the

parallel-for Balanced slower than the parallel-for. The division of the work is done on contiguous

intervals but the high density areas are concentrated at the poles of the ellipse. Therefore, it is more

appropriate to split this area in small pieces as we do in the dynamic schedule in the parallel-for.

The objective of the tasks-and-wait strategy is to remove potential barriers by having two sources

for the task insertions. Again the fine granularity leads to low performances. Moreover, the ab-

sence of priority system in OpenMP transforms this pattern in a basic task and wait execution.

The basic parallel-for implementation shows good results even for non-uniform test cases. This

is mainly because the underlying tasks have good granularities and the division of the work is local;

if there are two regions in a simulation, one with a high density the other with a low density, this

approach will not divide the entire interval among the threads but rather uses very small divisions.

Group-Tree based parallelizations TheGTOpenMP-4 executions are different from theGTStarPU

(NC-NR) even so they use the same data structure and do not use the reduction or commutative

operations. More precisely, GT OpenMP-4 appears to have inconsistent results and does not scale

in most of the cases whereas the GT StarPU (NC-NR) shows good performances. Therefore, the

difference come mainly from the underlying runtime systems and their respective overhead. In ad-

dition, in StarPU all the tasks are inserted and managed together, whereas in GCC OpenMP their

is an insertion window which may hide some potential ready tasks. Surprisingly the extensions of

the GT StarPU (NC-NR) which include the commute, GT StarPU (NR), or the commute and the

reduction, GT StarPU, do not give better results. This means that their is enough parallelism in the

given test cases. However, the GT StarPU (commutative L2L) strategy is less efficient which means

that using the commute on the last level L2L degrades the performance. The reason is related to

the StarPU system to manage the commutative tasks which is done before the priority are taken

into account. Therefore, when the mode between the last level L2L (h − 2 → h − 1) and the last

levelM2L (h− 1) are commutative, theM2L tasks are ready just aer the P2M and are selected by

StarPU. This automatically makes the last level L2L less prioritized even so they are more critical.

By comparing these different strategies, it appears that there is not a perfect scheme but the

parallel-for and GT StarPU have a good efficiency. The main advantage of the parallel-for is its

portability and simplicity whereas the GT StarPU can easily exploit the accelerators. But the other

approach are tied to the current GCC OpenMP implementation and its overhead in the tasks

management or the lack of a priority system.

In Figure 4.15, we show the execution trace for GT StarPU and 24 threads. We see that despite

the non-uniform distribution, the execution is correctly pipelined and there is no idle time.
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4.7.2 Distributed Memory Parallelization

In this section, we compare the Hybrid MPI/OpenMP implementation presented in Section 4.3,

which is described as a fork-join strategy with communication hiding, against a pure task-based

approach using StarPU (StarPU-MPI) as described in Section 4.5 for the uniform test case.

From Figure 4.16, both implementations have very close results and good efficiencies. For the

smaller test cases, see Figures 4.16a and 4.16b, the StarPU-MPI implementation is slower and

its efficiency is decreasing as the number of nodes increases. In fact, the test case is small (less

than a second in parallel) and thus the overhead from the runtime system becomes nonegligible.

Moreover, the granularity of the tasks should be reduced to have enough parallelism but this makes

the overhead even more important. For the larger test case, both implementation are very close

which means that the computation and communication are correctly interleaved.

In Figure 4.17, we show an execution trace for the StarPU-MPI using 7 nodes. We see that the

work is correctly pipelined even though there is a small difference at the end between the different

processes/threads. The receives are posted at the beginning of the executions, and thanks to

StarPU once a data is computed it is sent without impacting the execution.

4.8 Summary

We present different parallelization strategies for the FMM in shared and distributed memory. The

advanced methods using runtime systems need a larger granularity and few dependencies to be

efficient. Therefore, the usage of the group-tree helps to amortize the runtime overhead. Using

basic access modes as read/write limits the parallelism and we also need advanced access mode

as commutative or reduction operations. While, the classic approaches, parallel-for and hybrid

MPI/OpenMP, are very competitive, the StarPU strategies are easily expendable to accelerators.
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Figure 4.13: ScalFMM sharedmemory results for the uniform distribution from 1 to 24 threads and for 4 different number
of particles. The execution times for the parallel − for strategy using 24 threads for the respective cases are 0.07s,0.7s, 7.7s
and 88s.
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(h) Speedup (EllipsoidN = 2 · 109, h = 13, ng = 8000)

Figure 4.14: ScalFMM sharedmemory results for the ellipsoid non-uniform distribution from 1 to 24 threads and for 4
different number of particles. The execution times for the parallel − for strategy using 24 threads for the respective cases
are 0.05s,0.49s, 4.8s and 58s. Remark: the tasks-and-dependencies strategies cannot execute theN = 2 · 109 test case
because the GCCOpenMP 4 implementation is not able tomanage the large amount of tasks and their dependencies.
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Figure 4.15: Sharedmemory execution trace with the configuration: N = 2 · 107 particles, non uniform ellipsoid distribu-
tion, height of the tree h = 11, 24 threads and block size ng = 8000 in 5.2s. Legend: P2P (■), P2P between groups (■) ,
P2M (■) , M2M (■) , M2L (■), M2L between groups (■), L2L (■) and L2P (■) .
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(d) Speedup (UniformN = 2 · 108, h = 8, ng = 5000)

Figure 4.16: ScalFMMdistributed performance study for the uniform distribution using 24 threads and 1 to 20 nodes. The
execution times for the HybridMPI/OpenMP strategy using 20 nodes for the respective cases are 0.57s and 5.1s.
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Figure 4.17: Distributedmemory execution trace for the StarPU-MPI with the configuration: N = 2 · 108 particles, uniform
distribution, height of the tree h = 8, 24 threads, 7 nodes and block size ng = 2000 in 13.5s. The arrows representMPI
communications. The 24 threads of nodes are represented contiguously, whereas the nodes are separated by gray lines.
Legend: P2P (■), P2P between groups (■) , P2M (■) , M2M (■) , M2L (■), M2L between groups (■), L2L (■) and L2P (■) .
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5
Time-Domain BEM Solver using the FMM

In this chapter, we study the acceleration of the time-domain BEM for the wave equation with the

Fast Multipole Method. In the first part, we present the algorithm details of our TD-FMM kernel

which has been taken from [3; 102]. Then, we provide the formulation of the different FMM

operators. Finally, we discuss the time/frequency expression of the kernel and give some results

using ScalFMM as parallelization engine.

5.1 Time-domain BEM FMM Formulation

5.1.1 Limits of the Direct Approach

In Section 1.2.1, we describe the direct resolution algorithm and the linear system of our time-

domain BEM. This matrix solve has a quadratic complexity at each step: the Kmax matrices are

sparse but lead to d×N2 NNZ values with d ≥ 1. The complexity for the complete computation is

O(T.N2)with T the number of time steps. However, this description does not include the construc-

tion of the interaction matrices which has a quadratic complexity too. To build these matrices, we

have to compute the relations in time and space that each unknown has with each other. These

two quadratic complexities may limit the size of the problems we are able to solve and we aim to

reduce the whole complexity (the construction of the matrices and the solve) using the FMM.
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5.1.2 Receiving from the Past or Propagating to the Future

The linear system expression of our TD-BEM has been presented in Section 1.2.1 and we remind

here that at each time step we solve

Kmax∑
k≥0

Mk · an−k = ln ,

sn =
Kmax∑
k=1

Mk · an−k ,

an = (M0)−1 (ln − sn) .

(5.1)

In this approach, we compute what the unknowns receive from the previous time steps into the

current summation vector sn. In terms of accesses, at time n we use the Kmax − 1 vectors an−p, with

1 ≤ p ≤ Kmax and n− p > 0, which are the past emissions that impact the mesh in the present.

The same computation can be done with a different philosophy if instead of computing what the

unknowns receive, we propagate the present result to the future states. At each time step, once

we compute the current state an, we compute its propagation to the Kmax next summation vectors,

which is expressed by

sn+p = sn+p + (Mp · an); ∀p, 0 < p ≤ Min(Kmax,T− n) . (5.2)

The summation vectors are built incrementally by the previousKmax−1 iterations relatively to their
respective time. The vector an is used to update the Kmax − 1 next summation vectors. Once it has

been propagated, the vector an is not used any more and can be removed from the main memory.

At time step n, the summation vector sn is already complete, and we just subtract it to ln and solve

the result with M0,

an = (M0)−1 (ln − sn) . (5.3)

This approach is presented in Figure 5.1
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Figure 5.1: Propagation of the current state to the future
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In our FMM kernel, we consider the same idea and spread the current state to the future. Fig-

ure 5.2 gives a simplified view of the objective where the emission to distant unknowns in time/dis-

tance is done by the FMM. The rest of the algorithm is similar to the matrix approach where we

take into account the incident wave l and solve the linear system with M0. However, the well-

separated criterion between the unknowns is based on the spatial decomposition from the FMM

octree.
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Figure 5.2: The time-domain BEMFMM in a schematic view

5.1.3 Spatial Division of the Mesh by the FMM Octree

Our mesh that is composed of surface elements and integration points has to be integrated into the

FMM octree and its corresponding simulation box. The simulation box is the smallest cube which

includes our mesh and which is parallel to the axes. The FMM octree is built over this region and

creates a grid at the leaf level on the mesh as illustrated by Figure 5.3a. The surface discretization

elements might be covered by more than one leaf, and thus we have to decide how to connect

our mesh and the octree subdivision. The three most natural distribution are: 1) to distribute

the elements based on their centers, 2) to distribute the edges of the elements or 3) to distribute

the integration points (Gauss points). The choice is important because the accuracy decreases if

close elements are computed by the FMM instead of the direct method. Figure 5.3b shows two

triangles that both have a part inside the same leaf but also parts in distant leaves. Depending on

the distribution, these two triangles are computed by a direct computation (P2P) or by the FMM

(M2L at the leaf level).

Based on the study [103], we distribute the elements using their integration points. The interac-

tions between elements in neighbor leaves are computed using the matrix approach as presented

in Chapter 3 but with a propagation to the future instead of a reception from the past. On the

other hand, the interactions between elements distant by more than one leaf are approximated

and computed using the FMM. The size of the cells/leaves and the spacial subdivision is based on

the height of the tree h. The width of the leaves cannot be too small otherwise very close elements

are computed by the FMM. To ensure a correct accuracy, we choose to have the leaves 5 times
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(a) The octree leaf grid over amesh
(for h = 3)

(b) The division of the discretized
mesh elements between the leaves.
A choice has to bemade onwhich
leaf an element belongs to.

Figure 5.3: Amesh in an octree.

greater than Δxwhich is the size of the elements from the discretization of the mesh (or the average

of the sizes). At the beginning of our application, we search the appropriate tree height h such that
5Δx ≤ wh−1 = B/2h−1, where B is the width of the simulation box that cover the entire mesh and

wl the width of the boxes/cells at level l. From these definitions and the wave properties, c the
velocity and λ the wavelength, we can define additional variables

• d or dl =
√
3wl : the diagonal of the box at level l.

• R or Rl = dl/2 =
√
3wl/2 : the half of diagonal of the box at level l. It is also the radius of

the sphere that includes this box.

• rt or rlt = int(Rl/(cΔt)) : the radius of the box in terms of cΔt at level l.

5.1.4 Principle and Formulation

In this section, we describe the FMMkernel which is based on the formulation given in Appendix A.

This section introduces the mathematical details of our problem formulation, but it is not a prereq-

uisite to the understanding of our contribution and the implementation parts. Readers who do not

feel concerned about how the propagation of the wave is approximated mathematically may con-

centrate on the sphere discretization (Section 5.1.5), the APS function description (Section 5.1.6)

and the resulting FMM operators (Section 5.2).

Simplification of the Matrix Expression

The aim of the FMM approach is to accelerate the propagation of the present to the future, see

Equation 5.2. We consider a function Φ(x, t) defined on the data of an, from EquationΦ(x, t) =
∑

1≤j≤NS

∑
m≥1 a

m
j γm(t)ϕj(x),

P(x, t) =
∑

1≤j≤NT

∑
m≥1 b

m
j γm(t)pj(x).

(5.4)
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In this equation, an is the solution of the time step n, and is represented by the surface function Φ
over the mesh.

From Φ and the test-function ∂Ψ/∂(x, t) = φi(x)χm(t) later in time (m > n) we compute

smi = −1
c

∫
t∈R

∫
Γ×Γ

n⃗(x).⃗n(y)
4π|x− y|

∂2Φ
∂t2

(y, t− |x− y|
c

)φi(x)χm(t)dxdydt

= −1
c

∫
t∈R

∫
Γ×Γ

1
4π|x− y|

r⃗otΓΦ(y, t−
|x− y|

c
)r⃗otΓφi(x)χm(t)dxdydt .

(5.5)

It is appropriate to use the same approach as the frequency FMM which allows to compute fast

matrix-vector product. From a vector (ti)1≤i≤n to represent the function t⃗(x) =
∑

1≤i≤n ti.φ⃗i(x), we
compute the jth component of the product a.t by

(a.t)j = − 1
ik

∮
Γ×Γ

∂2G
∂vx∂vy

Φ(y)φi(x) . (5.6)

The core of the frequency matrix-vector product expression is replaced by the one from Equa-

tion 5.5, and in both cases there is a radiation on a surface element, with a pressure jump Φ(x, t)
and flow t⃗(x), to study its impact on the mesh Γ. The Equation 5.5 can be simplified because it is

equal to cDΦ with D given by

smi = DΦ(x, t) =
1
4π

∮
Γ×Γ

∂

∂nx∂ny
Φ(y, t− |x− y|/c)

|x− y|
dy . (5.7)

In practice cDΦ is computed using Equation 5.5 to remove the singularities, but this is not a

problem in our time-domain approach since we compute only far interactions. Therefore, the

resulting equation to compute is given by

smi = c
∫
t∈R

∮
Γ×Γ

∂

∂nx∂ny
Φ(y, t− |x− y|/c)

4π|x− y|
φi(x)χm(t)dxdydt . (5.8)

We consider G the Green kernel given by

G(R, t) =
δ(t− R/c)

4πR
. (5.9)

This kernel is the Fourier transformof theGreen kernel of the frequency domain problem (eikR/4πR).
Equation 5.8 can be written using a convolution in time, written ∗ for the rest of the study, as

smi = c
∫
t∈R

∮
Γ×Γ

∂

∂nx∂ny
G(|x− y|, t) ∗ Φ(y, t)φi(x)χm(t)dxdydt . (5.10)

In order to simplify, we remove the normal derivatives, because it is possible to introduce them

again later in the calculus, and we keep the same notation. Finally, we aim to compute

smi = c
∫
t∈R

∫
Γ×Γ

G(|x− y|, t) ∗ Φ(y, t)φi(x)χm(t)dxdydt . (5.11)
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Kernel Decomposition

y

xM
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C C'

Figure 5.4: Distant interaction from x to y

Like in the frequency case, the Green kernel is decomposed with a configuration similar to the

one shown in Figure 5.4. We denote by S the unit sphere in R3, s⃗ a point over S and R⃗ = x⃗y the
vector between x and y. Let introduce the operator G̃ given by

G̃(R, t) = − 1
8π2c

∂

∂t

∫
s⃗∈S

δ(t− s⃗.R⃗
c
)d⃗s . (5.12)

x

y

z

0

Φ

θ

s

sΦ

sθ

Figure 5.5: Spherical coordinate over the unit sphere S

On the unit sphere S a coordinate system is chosen such that the axis (Oz) is in the same direction

as R⃗ as shown in Figure 5.5. We obtain the relation s⃗.R⃗ = Rcosθ/c = τ and G̃ writes

G̃(R, t) = − 1
8π2c

∂

∂t

∫ π

θ=0

∫ 2π

φ=0
δ(t− Rcosθ

c
)sinθdθdφ

= − 1
4π2c

∂

∂t

∫ π

θ=0
δ(t− Rcosθ

c
)sinθdθ

= − 1
4π2R

∂

∂t

∫ R/c

τ=−R/c
δ(t− τ)dτ

=
1

4π2R

(
δ(t− R

c
)− δ(t+

R
c
)

)
.

(5.13)

The last term in Equation 5.13 is the Green kernel as it is defined in Equation 5.9. The second

term is an anti-causal effect which expresses the fact that what happens now on x is related to what
will happen on y at the future time t+ |x− y|/c. This has no physical meaning and this part should

be carefully removed in the algorithm using causality constrains. In the rest of the study we now

use G̃ instead of G. We remind that we have R⃗ = y⃗x = y⃗M + M⃗M′ + M⃗′x and considering that

δ(t− t1) ∗ δ(t− t2) = δ(t− t1 − t2), this decomposition of R⃗ can be inserted directly in G̃ which
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is transformed into several time convolution product

G̃(R, t) = − 1
8π2c

∫
s⃗∈S

∂

∂t
δ(t− s⃗.M⃗′x

c
) ∗ δ(t− s⃗.M⃗M′

c
) ∗ δ(t− s⃗.y⃗M

c
)d⃗s . (5.14)

We follow the choice of the original study to derivate the term relative to M′x.

Distant Interactions (Far-Field)

In this section, we aim to compute the interaction between two cells C and C ′ of centersM andM′

respectively. This computation includes the projection of the sub-domains Γ ∩ C and Γ ∩ C ′. The

resulting equation is given by

smi = c
∫
t∈R

∫
y∈Γ∩C

∫
x∈Γ∩C′

G̃(|x− y|, t) ∗ Φ(y, t)φi(x)χm(t)dxdydt . (5.15)

By using Equation 5.14, Equation 5.15 becomes

smi,(C,C′) = − 1
8π2

∫
t∈R

∫
s⃗∈S

∫
y∈Γ∩C

∫
x∈Γ∩C′

∂

∂t
δ(t− s⃗.M⃗′x

c
) ∗ δ(t− s⃗.M⃗M′

c
) ∗ δ(t− s⃗.y⃗M

c
)

∗Φ(y, t)φi(x)χm(t)dxdydtd⃗s .
(5.16)

By reordering the integrals, we obtain

smi,(C,C′) = − 1
8π2

∫
t∈R

∫
s⃗∈S

∫
x∈Γ∩C′

∂

∂t
δ(t− s⃗.M⃗′x

c
)

∗

[
δ(t− s⃗.M⃗M′

c
) ∗

(∫
y∈Γ∩C

δ(t− s⃗.y⃗M
c

) ∗ Φ(y, t)

)]
φi(x)χm(t)dxdydtd⃗s .

(5.17)

Like in the frequency FMM, Equation 5.17 leads to three computation stages which are the initial-

ization, the transfer pass and the integration pass.

Initialization (P2M). In this step, we compute for each leaf C the radiation function FC(⃗s, t) de-
fined on the unit sphere by

FC(⃗s, t) =
∫
y∈Γ∩C

δ(t− s⃗.y⃗M
c

) ∗ Φ(y, t)dy . (5.18)

Therefore, FC is related to only Φ from Equation 5.4 and the cell C of centerM. FC represents the

influence of Γ ∩ C on the external direction.

Transfer (M2L). In this stage, we transfer the result from the P2M on the cell C of center M to

the cell C ′ of centerM′. We perform a convolution of the function FC by the transfer function TM⃗M′
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which is related to s⃗ ∈ S and t

TM⃗M′ (⃗s, t) = δ(t− s⃗.M⃗M′

c
) . (5.19)

The result is still a function defined on S, since it represents the impact of Φ from Γ ∩ C on the

point M′.

Integration (L2P). The last stage performs an integration of the transfer result on three compo-

nents: S, the time t and Γ ∩ C ′

− 1
8π2

∫
t∈R

∫
s⃗∈S

∫
x∈Γ∩C′

[
∂

∂t
δ(t− s⃗.M⃗′x

c
) ∗ TM⃗M′ ∗ FC(⃗s, t)

]
φi(x)χm(t)dxdydtd⃗s . (5.20)

We can reintroduce the normal derivatives removed in Equation 5.11. From the original study,

the term ∂
∂nx

can be inserted into the P2M, and ∂
∂ny

in the L2P.

5.1.5 Unit Sphere Discretization

In the kernel decomposition, we use time-dependent functions defined on the unit sphere S in R3.

By introducing

g(x, s⃗, t) =
∫
y∈Γ∩C

δ(t− s⃗.M⃗′x
c

) ∗ δ(t− s⃗.y⃗M
c

) ∗ Φ(y, t)dy , (5.21)

Equation 5.17 writes

smi = − 1
8π2

∫
t∈R

∫
s⃗∈S

∫
x∈Γ∩C′

g(x, s⃗, t) ∗ ∂

∂t
TM⃗M′φi(x)χm(t)dxdydtd⃗s . (5.22)

For a given point x, the function g(x, s⃗, t) can be described as a radiation function on a domain

with a radius equal to twice the radius of C. Moreover, this function from L2(S) is expended in

spherical harmonics function (Yl,m) with l ≥ 0 and −l ≤ m ≤ l. In [104; 105; 106], they study

the bandwidth of the functions over the spherical harmonics to determine the bound l < L which

gives an accurate representation of g. From these studies, the bound L is chosen by

L = ksd+ Cε.log10(ksd+ π)

= (ωs/c)d+ Cε.log10((ωs/c)d+ π) .
(5.23)

The term d is the diameter of the boxC, see Section 5.1.3. The other terms ks andCε are parametrized

for the target simulation; ks = ωs/c is the wave number associated to the maximal frequency we

aim to study and Cε is the accuracy parameter (for example Cε = 7). More details are provided

regarding these two parameters in Section 5.1.6.

TM⃗M′ is also a function of bandwidth L such that the product of the two functions is of bandwidth

2L. Therefore, all the functions that we integrate have a bandwidth limited by 2L and are of the
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form ∑
−l≤m≤l
0≤l≤2L

Al,mYl,m(⃗s) . (5.24)

Therefore, we use the same discretization of the unit sphere as the ones from the frequency

FMM. This discretization is composed by a grid (θi, ϕj) of (L + 1)(2L + 1) points. The θi are the
Gauss-Legendre integration points and the ϕj are distributed equally on the interval (0, 2π) (we
have ϕj = j2π/(2L + 1)). In Appendix B.2, we give different discretization methods and for the

rest of the study we consider the use of the advanced approach, see Appendix B.2.2.

5.1.6 APS (Approximate Prolate Spheroidal)

From the previous definitions, an appropriate interpolation function must have a limited time-

support but also to be band-limited in frequency. We choose an extension of the approximate

prolate spheroidal function (APS) proposed in [107] which guarantees a correct accuracy up to a

a given frequency fmax (see [3] for a complete study). The function is given by

APS(t) =
ω+

ωc

sin(ω+t)
ω+t

sinh(ptΔtω−
√

1− t2/p2t Δt2)
sinh(ptΔtω−)

√
1− t2/p2t Δt2

. (5.25)

The function APS is parametrized by pt and χs, but it is also linked to variables from the problem

definitions and the choice of the frequency study (the variables ω+ and ω−. are defined further

in this section). We describe these different variables and their relations. From the simulation

properties, we have Δt and Δx which give us the ratio nCFL = cΔt
Δx . Usually, to ensure that from one

time step to the other the waves do not propagate to fast on the mesh, we must have nCFL < 1
and it is usual to choose nCFL = 1/2. However, in this formulation, any value of nCFL would work,

since the mathematical scheme is unconditionally stable, see [2].

The FMM method is parametrized by a maximum frequency fmax (chosen as is the maximum

frequency to study). Associated to fmax, we have λmax the wavelength, ωmax = 2πfmax the pulsation

associated to fmax and λmax
Δx the number of points per wavelength (in space). It is frequent to define the

maximum usable frequency on the mesh as fmax = c/10Δx ( ωmax = 2πc/10Δx) which corresponds

to 10 points per wavelength λmax.

The parameters pt and χs used in the function APS are also connected with the target accuracy

εt by

εt ≤
1

sinh(ptΔtω−)

≤ 1
sinh(pt π2

χs−1
χ0

)

≤ 1
sinh(pt π2

(ωs/ωmax)−1
(ω0/ωmax)

)

(5.26)
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Therefore, for a chosen accuracy εt and parameter pt, the minimal χs is given by

χs = (
2χ0
ptπ

sinh−1(
1
εt
)) + 1 = (

1
Δtfmaxptπ

sinh−1(
1
εt
)) + 1 . (5.27)

The number of discretization points over the unit sphere is based on the parameter L which itself

is connected to ks (or χs), see Section 5.1.5. On the other hand, the APS function has non zero

values in the interval [−ptΔt, ptΔt], and aer a time discretization, the signals are of length 2pt − 1
values. Therefore, for a given accuracy, pt is the parameter that allows to balance between the

number of discretization points of the unit sphere and the length of the signals from the function

APS. It should be carefully chosen as we show in the study part in Section 5.5.3.

We summarize here some of the notations we used in our formula but refer to the original study

to have more details

• ωc =
π
Δt : the time discretization requires that we work in band limited signals.

• χ0 =
ωc
ωmax

: oversampling ratio (in our case χ0 = 5/nCFL = 10).
• χs =

ωs
ωmax

: it is related to the maximum frequency and the accuracy (we choose it - or choose

ωs).

• ks = ωs/c : Number of wave associated to the maximal frequency.

• ωmax < |ω| < ωc : The pulsation over ωmax are not study and will certainly be wrong.

• |ω| < ωmax : this interval represent the pulsations we want to study (which are lower than

ωmax).

• ωc < |ω| : pulsation that should never exist into the computation to ensure correct results.

• ω+ = (ωs + ωmax)/2 : relation used in the r (APS) function.
• ω− = (ωs − ωmax)/2 : relation used in the r (APS) function.
The shape of the function r is shown in 5.6.
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Figure 5.6: APS function shape forΔt = 9.1 · 10−4, pt = 8,ωmax = 3.45 · 102,ωc = 3.45 · 103 andωs = 1.72 · 103.

5.2 Operators

In this section, we describe the FMM operators as we implement them in our application. We

remind that, from the formulation, we work with functions defined on the unit sphere which rep-

resent the emission of a cell/box to the outside.
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5.2.1 P2M

The P2M computes a Gaussian quadrature over the unknowns and transfers the values with the

APS function to the Gauss points from the unit sphere discretization. In the first stage, we evaluate

the source Gauss points (Gk) that are located inside a leaf with a Gaussian quadrature

h⃗(Gk) = pknG⃗k

j=1∑
nCdl

λjϕj(Gk) . (5.28)

In Equation 5.28, ϕj(Gk) is the evaluation of the unknown j at gauss point k.
In a second step, we transfer the potentials of the source Gauss points to the unit sphere Gauss

points of the leaf C of center M. In the time-domain, the scalar potential is transformed into an

APS signal which is added to each Gauss point of the unit sphere with the appropriate time shi

and magnitude. The formula is given by

FC(⃗s, t) =

 nCptG∑
k=1

r(t− s⃗ · ⃗GkM
c

− tn)⃗h(Gk)

 .⃗s . (5.29)

Each Gauss point represents an outer direction s⃗ on the unit sphere and stores a discretized signal.
More precisely, the APS function is non zero on the time step interval [−pt, pt] and the maximum

delayed between a source Gauss point Gk and the sphere that includes the leaf is rt time steps such

that the signals are non zero on [−pt − rt, pt + rt]. These time-domain signals can be transformed

into frequency-domains signals with a Fourier transform but it is also possible to perform this

transformation directly in the P2M by

F̃C(⃗s,ω) =

 nCptG∑
k=1

r̃(ω)e−i s⃗·
⃗GkM
c ωh⃗(Gk)

 .⃗s . (5.30)

The interest to choose the time-domain or the frequency-domain depends on the working domain

of the next operators.

Flops Evaluation

The first step is independent from the target accuracy and the same computation is performed for

the time-domain or the frequency-domain P2M. Let ndlC the number of unknowns in a leaf C, nGaverage
the average number of unknowns per Gauss point and GF = G/F the average number of Gauss

points in each leaf. The number of Flop is given by FU−to−G = GF × nGaverage × 14, where 14 is the

number of operations to evaluate an unknown. The complexity of this operation is linear relatively

to N since there is a linear relation between the number of unknowns and the number of Gauss

points.

The second step iterates on the leaves and performs a triple loop on each of them. The first

loop is over the Gauss points inside each leaf (ndlC ), the second loop is over the Gauss points of the
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unit sphere discretization ((L + 1) × (2L + 1)), and the third loop is over the time steps of the

APS signal (2 × (pt + rt) − 1). The total number of Flop per leaf in the time-domain is given by

Ftime−domain
P2M = (L + 1) × (2L + 1) × nGaverage × ((2 × (pt + rt) − 1) × 15 + 10). In this stage the

target accuracy changes the parameters L and pt which are related to the number of points in the

unit sphere and the length of the APS signal respectively. There are limited differences between

the computation in the time-domain or in frequency-domain but in frequency-domain we perform

complex multiplications.

5.2.2 M2M

TheM2M operator converts functions from level l+ 1 into functions of upper level l. It transforms

the signals defined over the the Gauss points from the unit sphere discretization of level l + 1
and centered in Ml+1 into signals on the Gauss points from the unit sphere discretization of level

l and centered in Ml. The number of Gauss points per sphere grows as we go up in the tree

but it depends on the accuracy which might be parametrized differently between levels. To shi

the center of a sphere, we have to shi the signals in time based on the wave velocity and the

distance betweenMl+1 andMl. Transforming the signals of the (Ll+1+ 1).(2Ll+1+ 1) points to the
(Ll + 1).(2Ll + 1) points is called the extrapolation. We define these two operations that compose

theM2M in Figure 5.7. It is possible to extrapolate before to shi or the inverse, but the accuracy

is expected to be better by first extrapolate and then shi.

Transfer Extrapolation

Figure 5.7: M2M the time-domain BEM composed by a transfer (time shift) and an extrapolation (increasing number of
Gauss points).

Time shi

The transfer between the two levels is done by shiing the signals in time relatively to the distance

between the parent and the child ⃗M(l+1)M(l). The signals from the children are accumulated into

the parent and in the time-domain we have

FC(l) (⃗s, t) =
∑

C(l+1)∈child(C(l))

δ(t− s⃗ · ⃗M(l+1)M(l)

c
) ∗ FC(l+1) (⃗s, t) . (5.31)
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If the shi coefficient is a multiple of Δt the operation is a simple copy. However, the delay is

usually not a multiple of the time step and we have to approximate the source signal to perform

the time shi.

A time shi in the time-domain is equivalent to a phase change in the frequency-domain which

is done by a complex multiplication. The frequency-domain equivalent of the Equation 5.31 is

F̃C(l) (⃗s,ω) =
∑

C(l+1)∈child(C(l))

e(−i⃗s · ⃗M(l+1)M(l)
c ω)F̃C(l+1) (⃗s,ω) . (5.32)

The frequency-domain expression hides a critical aspect of the time shi in this regime; when we

change the phase of a frequency signal the time signal is rotated. Therefore, if we rotate the result

of the P2M without being cautious on the time window the result will be wrong. As an example,

if we shi the non zero signal abcd by one time step in the frequency-domain, we will obtain the

time signal bcda. To have a correct shiing, the original time window should be increased to have

00abcd00 and to rotate the zero values 0abcd000. But we cannot increase the time window and

pad with zeros a frequency signal without a reverse transformation in the time-domain because

it changes the pulsations. At the time of writing, no fast methods exists to change the pulsations

of a frequency signal. While a time shi in the frequency-domain has a good accuracy and is not

intrinsically expensive, the problem of the time window/pulsations is an important issue. On the

other hand, shiing in the time-domain is done by interpolation and we have to use advanced

methods to have a good accuracy, see results in Section 5.5.2.

Aer the P2M, the signals are non zero in the time interval [−pt − rt, pt + rt]. During the M2M
the signals are shied by s⃗· ⃗M(l+1)M(l)

c which is included in the interval [−
⃗M(l+1)M(l)

c ;
⃗M(l+1)M(l)

c ]. The non

zero interval is increased by half the box diagonal divided by the wave velocity, rt, the new non

zero interval is [−pt − rt − rt; pt + rt + rt].

Extrapolation

The extrapolation step is the same in the time-domain or the frequency-domain. We summarize

three methods with different costs and implementation difficulties but they all convert the values

of the Gauss points at level l + 1 to the Gauss points at level l. Therefore, the conversion should

be applied on all the non zero time interval in the time-domain and on all the pulsations in the

frequency-domain.

Method 1: direct relation matrix. In this approach, we compute a transfer matrix Cl+1→l of di-

mension (Ll+1+ 1).(2Ll+1+ 1)× (Ll+ 1).(2Ll+ 1) which contains all the coefficients to transform

the values at the unit sphere discretization Gauss points from level l − 1 to the ones at level l.
The same matrices are used for the M2M and the L2L and we need one matrix per level but the

memory occupancy of this approach is huge because the matrix are of order O((Ll+1)4). The main

advantage of this approach is its straightforward expression and the value at position (k, k′) is given
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by

Mk,k′ =
∑

−l≤m≤l0≤l≤L(L)

Y∗
l,m(s⃗k

(l))Yl,m(s⃗k′ (l−1))

=
∑

0≤l≤L(L)

2l+ 1
4π

Pl(cosθ) ,

where cosθ = s⃗k(l).s⃗k′ (l−1) .

(5.33)

The matrix Cl+1→l is used either with a matrix-vector product if we work on one time interval/pul-

sation at a time or with a matrix-matrix product if we convert all the values from a cell. It is possible

to reduce the memory footprint of the matrix by removing the values lower than a given threshold

to obtain a sparse matrix.

Method 2 : Ql
m polynomial. An alternative is to use the Ql

m polynomial for which we provide the

recurrence formula in Appendix B.1.3. The extrapolation is done by

F̃(l+1)
i,m =

∑
0≤j≤2L(l+1)

e−imφ(l+1)
j F(l+1)

i,j ,−L(l+1) ≤ m ≤ L(l+1)

F̃(l+1)
i,m =

∑
i

 ∑
|m|≤l≤L(l+1)

Qm
l (cosθ

(l+1)
i )Qm

l (cosθ
(l)
i′ )

 F̃(l+1)
i,j

F(l)
i′,j′ =

∑
−L(l+1)≤m≤L(l+1)

eimφ(l)
j F̃(l)

i′,m .

(5.34)

The first loop weights the (Ll+1+1).(2Ll+1+1) source Gauss points using the values from the unit

sphere discretization. In a second step, we apply a DFT to the Gauss points in the φ direction.

Then we convert the sources Gauss points to the target Gauss points using the Ql
m polynomial. The

last step applies an inverse DFT to be back in the original domain. These different stages must be

done for all the non zero time steps/pulsations of the input vectors. The complexity is close to the

direct method but the memory occupancy is much lower because we do not store the complete C
matrix.

Method 3: dissociated Ql
m. This approach uses the relation

∑
|m|≤l≤L(l+1)

Qm
l (cosθ

(l+1)
i )Qm

l (cosθ
(l)
i′ ) =

√
(L(l)+1)2 − m2

4(L(l) + 1)2 − 1

×
[Qm

L(l)+1(x
′)Qm

L(l)(x)
x′ − x

−
Qm

L(l)+1(x)Q
m
L(l)(x′)

x′ − x

]
.

(5.35)

We apply the same operations as the Ql
m polynomial approach but we split the computation in
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three parts where the central operation is given by the matrix

Ci′,i =
1

cosθl−1
i′ − cosθli

. (5.36)

Flop Evaluation

In our implementation of the M2M, we shi the signals in time and then extrapolate. Therefore,

the time shi is applied on the (Ll+1).(2Ll+1)Gauss points of the child unit sphere discretization.
Shiing in the time-domain costs (Lh−1 + 1).(2Lh−1 + 1).(2(pt + rt) − 1).18 from h − 1 to h − 2
because the signals are of length (2(pt + rt) − 1) and the cubic interpolation costs 18 Flop per

value. In the frequency-domain, the phase shi is done by a complex multiplication which leads

to a total of (Lh−1 + 1).(2Lh−1 + 1).(2(pt + rt) − 1).8. The extrapolation looks similar in the

frequency and time domains but in the frequency-domain we deal with complex values. When

using the Ql
m and the Ql

m Dissociated approaches in the frequency-domain, the DFT and inverse

DFT are done from complex to complex. There is a total of Lh−1 DFT on signals of length 2Lh−1

for each of the 2(pt + rt) − 1 different non zero time steps/pulsations. Once the polynomial has

been used, there is a total of 2Lh−2 + 1 inverse DFT on signals of length 2Lh on the same non

zero time steps/pulsations. In addition, in any domain, the core part of the extrapolation performs

(Lh−1 + 1).(2Lh−1 + 1).(Lh−2 + 1).(2Lh−2 + 1) complex multiplications.

5.2.3 M2L

The transfer is done by a convolution product with the function

TL
M⃗M′ (⃗s, t) =

∂2

∂t2
δ(t− s⃗.M⃗M′

c
) ,

GC′ (⃗s, t) = TL
M⃗M′ (⃗s, t) ∗ FC(⃗s, t) .

(5.37)

By considering the spherical harmonics of rank lower or equal than L, TL
M⃗M′ is approximated by

TL
M⃗M′ (⃗s, t) =


c

MM′
∂2

∂t2
∑L

l=0 (l+ 1/2)Pl

(
ct

MM′

)
Pl

(
cos(⃗s, M⃗M′)

)
, |t| < MM′

c
0 , otherwise

(5.38)

There is a finite number of non zero values based on the distanceMM′ and the time discretization

step Δt. The function TL
M⃗M′ is of length 2dt − 1, thus the convolution product extend the length of

non zero interval of the source vectors by 2dt − 2, where dt = round_down(MM′

c ). The interactions

of the M2L are from different distance relatively to the target cell, such that the transfer signals

have different non zero length.

A convolution product in the time-domain is equivalent to term-by-term multiplications in the

frequency-domain. The transfer function T̃L
M⃗M′ (⃗s,ω) must be computed directly in the frequency-

domain because it is not band limited, and computing the DFT of TL
M⃗M′ (⃗s, t) results in an incorrect
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signal. The transfer signal in the frequency-domain is given by

T̃L
M⃗M′ (⃗s,ω) =

L∑
l=0

(2l+ 1)(−i)ljl
(
ωMM′

c

)
Pl

(
cos(⃗s, M⃗M′)

)
G̃C′ (⃗s,ω) = T̃L

M⃗M′ (⃗s,ω).F̃C(⃗s,ω) .

(5.39)

Like the other operators, theM2L can be computed either in the time or the frequency domain

using the appropriate conversion. For example, if the M2M is done in the time-domain, we trans-

form the multipole part of the source cell in the frequency-domain by a DFT, and then we can use

theM2L in the frequency domain. Therefore, we use theM2L in the frequency-domain even if all

the other operators are in the time domain.

We provide the recurrence formulas to compute the Legendre polynomials and its derivative in

Appendix B.1.1 and Appendix B.4.1 respectively.

Flop Evaluation

We do not count the construction of the matrices which is perform during a pre-computation stage.

We remind in Appendix B.3.4 that the result of a discrete convolution product between two signals

of lengths lA and lB is of size lA∗B = lA + lB − 1 with a complexity of O(lA × lB). Therefore, a single
M2L interaction costs (Ll + 1).(2Ll + 1)× (2rt − 1)× (2pt − 1) Flop in the time-domain. In the

frequency-domain, the term-by-term multiplications lead to (Ll+ 1).(2Ll+ 1)×4(pt− 1)×6 Flop,

considering that a complex multiplication costs 6 Flop.

5.2.4 L2L

The L2L operator is similar to theM2M but instead of an extrapolation it uses an interpolation. In

the interpolation, we convert the (Ll + 1).(2Ll + 1) Gauss points to the lower level discretization

with (Ll−1 + 1).(2Ll−1 + 1) Gauss points, and with Ll ≥ Ll−1. The interpolation is the transposed

of the extrapolation and thus the same methods are applied. As in the M2M there is a time shi

based on the distance between the parent cell and its children. The number of Flop for a L2L is

the same as the M2M except that the length of the non zero time interval is much greater because

it has been extended by the M2L at the same level and particularly by the upper M2L propagated

by the upper L2L.

5.2.5 L2P

Aer the M2L at the leaf level and the L2L from h − 2 to h − 1, we have (Lh−1 + 1).(2Lh−1 + 1)
time-domain signals per leaf. The TD BEM algorithm needs the summation vector sn and thus

some of the values from these signals must be applied to the unknowns. These time signals cover

several time steps and we might not need all their values to obtain the current time step summation

vector. Therefore, we just apply the values that will modify the current summation vector sn (but
also the future summations vectors sp>n in case of incomplete FMM as presented in Section 5.3.2).
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Conversely to the P2M, we first transfer from the unit sphere discretization Gauss points to the

leaves Gauss points and then to the unknowns. The first transfer is done by

g⃗(Gk, t) =
∫
s⃗∈S

GC′ (⃗s, t− s⃗ · M⃗′Gk

c
)⃗sd⃗s . (5.40)

Then the transfer from the Gauss points to the unknowns is done by

Λm
i =

1
8π2c2

nC
′

ptG∑
k=1

n⃗Gkpkϕi(Gk) [⃗g(Gk, tm)− g⃗(Gk, tm−1)] . (5.41)

These operations must be done in the time-domain because we want to end with signals in time-

domain that are compatible with our TD-BEM.

Flop Evaluation

The first step is done with a double loop over the Gauss points from the unit sphere discretization

and the leaf Gauss points to shi the time vectors. The Flop cost is given by (L+ 1)× (2L+ 1)×
nGaverage × v × 18 with v the length of the non zero time signals depending on the operations that

were applied to the resulting local part of the leaves. The transfer from the Gauss points to the

unknowns in a double loop of cost GF × nGaverage × v.

5.3 Optimizations

5.3.1 Discussion on the Choice of Time or Frequency Operators

The different FMM operators presented in Section 5.1 are formulated in the frequency-domain or

the time-domain. In addition, the domain can be different between the operators, between the

levels or from one iteration to next because we can pass from one domain to the other with a

Fourier transform. The time shi is the central operation which makes its computation critical for

the performance. We remind that a time shi in the time-domain is done with an interpolation as

the ones presented in Appendix B.5, whereas in the frequency-domain we introduce a phase shi

in the signals with complex multiplications. The presented techniques have a linear complexity but

different accuracies that we study in the experimental Section 5.5.

In Section 5.2.2 we introduce the drawback of working in the frequency-domain when we have

to shi the signal in time. We remind that the extremities of the signal should be zero to ensure

a correct phase shi which rotate the time values. As an example, if we transform a time signal

of N non-zero values into a frequency-domain signal using a DFT, we end up with N complex

numbers (or N/2 since there is a symmetric relation between the complex values).This frequency

signal cannot be shied in time by any coefficient otherwise some values in the time signal will

rotate from the front to the back. If we want to shi this signal by −1.5 time steps, we must

add two zeros in front of the time signal before transforming it in the time-domain with a DFT

and we end-up with N + 2 complex numbers and different pulsations. Using the operators in the
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frequency-domain, implies to change the time window by transforming the frequency signals in

the time-domain, pad with enough zeros and then transform back in the frequency-domain before

apply the phase shi. This adds one DFT and one inverse DFT to the cost of the phase shi. An

alternative is to find the maximum possible shi in our entire FMM to pad the signals in the P2M
with enough zero to ensure that all the shis will be correct. The extra-cost of this method is a huge

memory occupancy but also much more computation because many operators have the length of

the vector in their complexity. In other words, the time shi in the frequency-domain involves extra

DFTs or additional memory occupancy and computation.

5.3.2 Incomplete FMM

In the matrix computation presented in Chapter 3, the state of an unknown i is stored in an(i) and
is used with the different interaction matrices depending on the distance between i and the other

unknowns. If the distance between the unknowns i and j is around k time steps, the value an(i)
is used at time step n + k with the matrix Mk. The FMM has a similar property and the distance

between the leaves and the successive time shis change the date of usage of the values.

The P2M generates non zero values on the time interval [−pt − rt, pt + rt]. These signals are

shied by the M2M, M2L and L2L before being applied by the L2P. In the M2L at level l, the
minimum distance between two interacting cells is the width of a single box wl. The radius of a

covering sphere at this level (Rl) reduces this distance to ol = wl − 2(Rl − wl). It means that the

value at time zero in the source cell will not be used before õl = (ol/(cΔt))− pt − rt steps because
the M2L will delay the signal. The signals from the P2M are not needed before at least õl time

steps.We keep the values in the leaves but we shi them by one time step during õl iterations which
increases the non zero interval to [−pt − rt − õl, pt + rt]. Then we must apply the M2L because

some values in the leaves will be used for the current summation vector. This propagation allows

us to compute an incomplete FMM for several iterations; a complete FMM stands for a complete

upward, transfer and downward passes.

While this reduces the amount of work, this also leads to a more complex algorithm. In terms

of implementation, we round the õl coefficient to a multiple of the lower coefficient õl+1. If we have

õh−1 = 2, we store on the cells of the leaf level, the results of two iterations. Each two iteration,

we compute the M2L at the leaf level. It is more convenient not to keep the transfered values at

the leaf level because we use this memory emplacement for the third iteration P2M. We solve this

problem by computing the M2M between h− 1 and h− 2, and more generally we apply the M2M
from h− 1 to h−2 each k× õh−1 time step. Therefore, at h−2 it is natural to compute the transfer

pass at a multiple of õh−1. Moreover, by doing so we compute a single downward pass which takes

into account all the transfers which have been done at a given step.

5.3.3 ScalFMM as Parallelization Engine

Our time-domain BEM FMM kernel has been developed above ScalFMM following its kernel

API/interface. We benefit of the ScalFMM parallelization strategies as presented in Chapter 4.
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However, ScalFMM has been originally developed for particle simulations and some parameters

should be customized to manage the fact that the cost of our operators increases as we go up in the

tree (which is not the case with usual particle-wises kernels). For example, the chunk size of the

classic fork-join division might need to be reduced. Moreover, there is a maximum of 64 cells at

level 2 and thus a level-by-level approach is not able to involve more than 64 threads. In addition,

the default balancing techniques for the Hybrid OpenMP/MPI parallelization are done at the leaf

level using the number of leaves or number of particles per leaf.

5.4 Expression of the 4D FMM

One can describe our time-domain BEM FMM as a 4D FMM because it involves the spatial di-

mension but also the time dimension. The interactions between elements take into account the

distance, which leads to different paths in the FMM tree, and the time which delayed the opera-

tions. In the complete FMM algorithm, we define the dependencies between the operation with

the tasks-and-dependencies strategy for example. We can imagine a similar approach to take into

account the time dependencies.

The straightforward implementation should take into account the fact that we do not need a

complete FMM at each iteration by inserting the tasks up to a given level. A more finer implemen-

tation should express the time dependency between the cells and the operations. However, the

time shis are not multiples of Δt which makes the identification of the time dependencies difficult

to find. The scalar states of the unknowns are transformed into a discrete signals and it is not

easy to found out which values inside this vector is needed by a remote leaf. Moreover, the time

shi operation in the time-domain needs a time window for each interpolated value (to use Taylors

expansion for example) and thus the operators cannot easily be divided in the time direction. The

same problem is encountered in the frequency-domain because the signals are in form of pulsa-

tions and cannot be spitted in the time direction. In addition, the current runtime systems do not

provide hierarchical data dependencies which would be needed to fully express the dependencies

in time. However, this idea might become achievable and competitive with new hardware or new

tasks-and-dependencies expressions.

5.5 Preliminary Numerical Results and Parallel Study

5.5.1 Representation of the Unit Sphere

In Figure 5.8, we represent the unit sphere discretization of a leaf aer a P2M. In the correspond-

ing case, a single unknown is emitting in the upper-le direction. We remind that from a scalar

value, the P2M creates a signal with several values in time. On the figure, we see each signal of

the Gauss points of the sphere and we recognize the APS signal. Depending on the Gauss point

orientation/directions and distances relatively to the emitter, the signals are more or less shied

and with different magnitudes.

In Figure 5.9, instead of representing the signals on the Gauss points, we represent the different
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(a)Complete unit sphere (b) Truncated unit sphere

Figure 5.8: Unit sphere example at leaf level with an emission on the upper-left direction. The time signals attached to each
Gauss point are represented andwe recognize the APS function. Themagnitude of the signals are represented from blue
(low) to red (high).

time steps separately. Each sphere represents the magnitude of the signals for the different Gauss

points at a given time step. This example shows a unit sphere at the leaf level which receives a

contribution from its front and thus we see the propagation of the wave to the back.

Figure 5.9: Propagation of the wave for several time steps on a target discretized sphere. The different spheres represent
the values that will be applied on the includedmesh elements.

5.5.2 Time Shi Evaluation

We discuss in Section 5.3.1 how critical is the time shi operation for the accuracy and the per-

formance. In Appendix B.5, we explain how we use the linear interpolation, the cubic interpola-

tion or a frequency phase shi to perform a time shi. In Figure 5.10, we compare the accuracy

of these three methods to shi an APS function against the real APS function. We see that the

linear-interpolation shi is less accurate but that the two other methods are very close. It means

that there is no advantage in terms of accuracy to use the frequency-domain shi. Therefore, the

choice between these two methods is only driven by the performance. We remind that the shi

in the frequency-domain requires to play with the time window, which costs numerous DFT and

inverse DFT.

Efficient libraries exist to perform theDiscrete Fast Fourier Transform, and the twomorewidespread
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Figure 5.10: Time shifting accuracy for an APS function. The shift is done for t ∈ (0;Δt). The accuray for t = kΔt is equal to
themachin precision since it is just a move of the values in the array.

are the FFTW library [108] and the Intel MKL [47]. In our application, we have to compute multi-

ple DFT of the same size because all the vectors of a cell have the same length. In Figure 5.11, we

show the time to compute several DFT for two pairs of hardware/library configurations. We see

that computing each DFT individually (DFT-Single by fftw_plan_dft_1d) is faster than computing

the DFT for all vectors in a single call (DFT-Many by fftw_plan_many_dft). The difference is even
more important for the MKL. In the DFT-Single we use a single result vector for each DFT suc-

cessively, whereas for the DFT-Single Buffered we use V distinct buffer. Therefore, the difference

between the two methods comes from memory effect and we see that it has an important impact

on the i7.
We remind that a time shi in the frequency-domain implies to increase the time window (one

DFT plus one inverse DFT per vector) and to multiply each complex by a complex value. In

Figure 5.12, we present the time taken to perform the time shi in the frequency-domain and in

the time-domain using a cubic interpolation where the derivative are based on Taylor expansions.

For the frequency-domain we count only one DFT (instead of one DFT plus one inverse DFT)

but it is much slower compared to the time-domain shi. Moreover, our cubic interpolation is as

accurate as the frequency-domain shi and could be optimized with SIMD intrinsics. Therefore,

it looks advantageous to perform the time shi in the time-domain.

5.5.3 Parametrization

We explain in Section 5.1.6, that once the accuracy is chosen we can change two parameters pt
and χs. These values are tied to guarantee the target accuracy but they should be minimal to

reduce the workload. For a given case, we look at the relation between those two parameters in

Figure 5.13a. The sinh function in the original formula makes the χs becoming very large as we

reduce pt. We recall that χs is used to find the parameterLwhich is used in the sphere discretization,
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Figure 5.11: FFTWPerformance for three set of vectors (V) and different vector lengths.

whereas pt is used in the length (V) of the time-domain signals on the Gauss points from the unit

sphere discretization. Figure 5.13b shows the resulting coefficients L and V for different pt, and
considering that we use the lowest χs. We can estimate the cost of the operators by looking at the

values each cell contains. In Figures 5.13c and 5.13d we show the number of values a leaf holds

for two widths (W). For the target accuracy 10−2 the choice of pt is crucial and a value between 10
and 20 seems an appropriate choice. In our implementation, the choice of pt is static, but it would
be possible to pre-compute the best parameters before executing the FMM simulation.

5.5.4 Test Cases

To study our implementation of the TD-FMM, we use the different test cases introduced in Sec-

tion 1.2.4 based on the cone-sphere mesh. The configurations are summarized in Table 5.1 where

we add some information regarding the FMM resulting octree.

Case C-927 C-4269 C-10012 C-22468

Number of unknowns 927 4269 10012 C-22468
FMM tree height 3 4 5 6

Number of leaves in the FMM tree 16 64 234 936
Number of NNZ interaction matrices (Kmax) 117 244 370 551

Number of NNZ matrices between FMM leaves 60 64 49 37
Number of time steps (T) 2033 4345 6647 9957
Size of the simulation box 3.3 7.3 11 16

Fmax 348 337 335 334
Incomplete FMM coefficient l = h− 1 16 18 13 10

Incomplete FMM coefficient l = 2 16 36 52 80

Table 5.1: Cone-sphere test cases specifications.
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Figure 5.12: Time shifting duration on a Intel XeonE5− 2680 at 2, 50GHz andwith Intel MKL 11.2 (2015.3.187)

Experimental setup. For the rest of the TD-FMM study we use the following configuration: the

nodes are composed by 2 Dodeca-core Haswell Intel® Xeon® E5-2680 at 2, 50GHz and 128GB
(DDR4) of shared memory, and we use Gcc 4.9.2, Openmpi 1.8.4 and MKL 11.2 (2015.3.187).

5.5.5 Time-Domain vs. Frequency-Domain Operators

We introduce our FMM operators in the time-domain and the frequency-domain in Section 5.1. In

Table 5.2, we compare the solve of the FMM for three configurations: all the operators are com-

puted in the time-domain (Time-domain operators (TD M2L)), all the operators are computed

in the frequency-domain (Frequency-domain operators), and an hybrid method where all the op-

erators are in the time-domain except the M2L which is in the frequency-domain (Time-domain

operators (FD M2L)). This last method involves Fourier transforms before and aer each M2L
operation. We see that the time-domain schemes are much faster than the full frequency-domain

approach. This is not surprising from the result of the time shi cost in previous Section 5.5.2
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Figure 5.13: Study of the relation between χs and pt for an accuracy of εt = 10−2,Cε = 7 and two boxwidths (W = 0.1
andW = 1). The physical parameters are fmax = 3.482218 · 102 Δt = 1.435867 · 10−4 and c = 3.4 · 102.

which increases the complexity, as discussed in Section 5.3.1. The pure frequency-domain ap-

proach is not competitive, and we concentrate on the time-domain operators for the rest of the

study with possibly the M2L in the frequency-domain. The computation is faster when the M2L
is computed in the frequency-domain, and this is the expecting behavior because the convolution

product (time-domain) has a larger complexity compared to the term-by-termmultiplications equiv-

alent (frequency-domain).

Time-domain operators (TD M2L) Time-domain operators (FD M2L) Frequency-domain operators
Solve Time 58 122 s 53 241 s 97 861s

Table 5.2: Execution time TD-FMMwith TDVs. FD operators to solve the Case C-927 (do not include the construction of
thematrices). The solves are done sequentially in double precision.

5.5.6 Matrix Approach vs. FMM Approach

The objective of our TD-FMM is to reduce the total simulation time compared to the matrix ap-

proach from Chapter 3. The total time includes the construction of the interaction matrices (ob-
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tained from an external black-box) because the FMM computes the interaction matrices between

the leaves only. In the rest of the study, we use the FMM operator in the time-domain but also the

M2L in the frequency-domain.

Flop/Cost Estimations

Figure 5.14a shows the estimation of the Flop cost to compute the summation stage using the

FMM and the matrix approach. For the matrix approach, this number is obtained by multiplying

the number of NNZ in the matrices, the number of iterations, the number of right-hand sides

and 2 for the plus-equal operation. For the FMM, we develop a kernel estimator which counts

the operations that the real kernel would have done. We see that the number of operations in

the FMM is drastically much higher but the gap reduces as the problems become larger. Again,

computing the M2L in the time-domain reduces the Flop cost. In Figure 5.14b, we provide the

complexity to compute the interaction matrices for both approaches; we look at the complexity

to compute the interaction matrices between the leaves or for the entire system. Generating the

interaction matrices between the leaves is of course much cheaper but it is also more competitive

as the problems become larger too. The balance between the costs of the construction and the

solve will make the FMM more or less competitive.
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In Figure 5.15, we provide the details of the cost for the different operators. We compare the

two methods with the M2L in the time or in the frequency domain, and we see that from the

estimation theM2L in the time-domain is more and more expensive as the problem size increases.

The estimations also shows that the P2M is the dominant operator but the cost of the L2L increases

with the size of the problems. The P2M is done at each time steps (to propagate the present to the

future) and our estimation is based on our implementation where we do not compute the real APS
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function, which is based on expensive mathematical operators, but we use a linear interpolation.

The L2L is more and more important because as the problems become larger, the signals cover

more time steps especially from the upper M2L.
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Figure 5.15: Relative cost for the different FMMTD operators in terms of Flop.

We also test to reduce the height of the tree, and the results are not shown in the current study

because it always increases the overall cost in our cases. For a given configuration, it is clear that

reducing the size of the tree increases directly the cost of the matrix construction. But it also

increases the cost of the computation stage, and for example the C − 22468 case has a cost of

4.1 · 1015Flop for h = 5, whereas from the table it has a cost of 2.5 · 1015Flop for h = 6s.

Sequential Comparison

In Table 5.3 we compare the FMM approach with operators in the time-domain against the matrix

approach. The test case C-927 has a low number of unknowns, but it is already expensive because

it has 2033 time iterations. We see that the total execution time is not negligible especially for

the FMM. The FMM is clearly slower than the direct matrix approach for this test case but as

expected, the FMM is faster for the construction of the matrices. Therefore, the competitiveness

of the FMM is tied to these ratio between the construction of the matrices and the solve costs.

The solve stage is proportional to the number of right-hand sides whereas the construction of the

matrices is unchanged (because the samematrices are used) and this is an advantage for the matrix

approach. In order to study larger test cases, we have to use a parallel implementation even if it

certainly includes efficiency difference from the parallel implementations rather than the underlying

methods. In addition, we see from the Flop estimations, Figure 5.15, and the results of the test

case C-927, Figure 5.3, it appears better to compute the M2L in the frequency-domain.

Stages TD-FMM TD-FMM (FD M2L) Matrix approach
Construction 76 s 76 s 242 s
Solve 58 122 s 53 241 s 7.8 s
Total 58 198 s 53 317 s 249.8 s

Table 5.3: Execution time TD-FMMwith TD operators Vs. matrix approach to solve the Case C-927. The solves are done in
sequential.
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Shared Memory Parallel Comparison

A main difference between our TD-FMM kernel and the usual particle-based FMM kernels is the

high cost of the operators and the small tree height. The tree height is reduced not only because

the far-field is expensive but also because the size of the discretization mesh elements restrained

the width of the leaves. ScalFMM proposes several parallelization strategies on shared memory

as discussed in Chapter 3. From the parallel efficiency results, see Section 4.7, the parallel-for is

efficient to compute particle-based simulations. However, the small number of cells/leaves restricts

the parallelism; for example the C-927 case has only 16 leaves. One solution to introduce more

parallelism is to parallelize not only the FMM algorithm but also the operators.

In Figure 5.16, we present the time to compute the different study cases using the FMM or

the direct matrix approach. For the FMM, we study three different parallelization schemes; the

parallelization is done at the FMM level (Threaded FMM), the parallelization is done inside the

kernel (Threaded kernel), or the parallelization is done at both levels (Mix FMM/Kernel). We

observe that for the small case C-927, it is better to use inner parallelism directly in the kernel. This

is because there are only 16 leaves for 24 threads and moreover the leaves are partitioned into 27
colors in the P2P. But, as the size of the problems become larger, there is enough parallelism and

it is better to parallelize at the FMM level. The best parallelization scheme mixes both parallelism,

it uses 4 threads at the FMM level where each of them creates 6 threads inside the operators. This

solutions has good memory properties by having only 6 threads which work on the same data/cells

but only 4 threads at the FMM layer. However, when we compare the TD-BEM to the direct matrix

approach, even if the gap seems to reduce the speedup is stuck, and it is not competitive for the

number of unknowns we study.

In Figure 5.17, we provide the percentage in terms of simulation time for the different FMM

operators. It matches our Flop cost estimation from Figure 5.14a.

Memory Occupancy Evaluation

In Figure 5.18, we give the memory occupancy for the matrix approach and the TD-FMM. In

addition, we show the size of the complete interaction matrices which is the number of non zero

times the size of the floating point data type. The matrix approach has a limited overhead against

the size of the interactionmatrices because it only allocates the an and ln vectors. On the other hand,

the TD-FMM requires muchmore memory even if the factor decreases against the matrix approach

as the problems become larger. Moreover, the size of the FMM is proportional to the number of

right-hand sides because we need one octree per right-hand side since we keep information inside

the cells between the iterations. Whereas, in the matrix approach we use the same matrices, and

we see from the figure that the memory cost does not increase a lot as we increase the number of

right-hand side.
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Figure 5.16: Comparison of the TD-FMM, with operators in the time-domain and theM2L in the frequency-domain,
against thematrix approach on one node using 24 threads. In the Threaded FMM the parallelism is done above the tree
level by ScalFMM. For the Threaded-Kernel the parallelism is done inside the kernel above the Gauss points of the unit
spheres. TheMix FMM/Kernel is based on nested parallelization, 4 threads works on the tree levels and each of them cre-
ates 6 threads inside the kernel. The captions of the different cases show the overhead of the FMMTD-BEM against the
matrix approach.

Hybrid MPI/OpenMP Comparison

In Figure 5.19, we show the execution times for the TD-FMM and the matrix approach using 2
nodes. The matrix approach has an efficient parallelization strategy which is difficult to bypass.

Moreover, the construction of the matrices has an superlinear speedup, which is difficult to study

because it is an external module. The system is divided between the two nodes, and therefore

the parallelism at the FMM level is efficient for the C-10012 case because in C-4269 there are not

enough leaves/cells. Finally, the gap remains almost the same compared to the shared memory
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executions, and our FMM is slower.

5.6 Summary and Perspective

Our preliminary study is empirical, and our comparison is more on our implementations rather

than on the methods. The preliminary results illustrate how difficult it is to bypass the matrix ap-

proach and show that our implementation of the TD-BEMwith the FMM is clearly not competitive.

The construction of the matrices is the dominant part of the matrix approach solver, but we do

not have the hand on this layer. However, any optimizations and improvements of this part will

make the matrix approach even better against the FMM based solver. Moreover, it seems that the

generator performs many hard drive accesses, and implementing a pure in-core version might lead

to a huge speed-up.

Increasing the number of right-hand sides is also a drawback to the FMM approach. From a

memory standpoint, we need one octree per right-hand side whereas the matrix approach only

allocates extra vectors. From the computational side, the matrix construction cost is independent

of the number of right-hand sides, whereas the computation is proportional to it, which is also an

advantage in the matrix approach.

It does not seem interesting to compute the TD-FMM using upward/downward operators in the

frequency-domain. Therefore, the future work on the method should focus on the time-domain

operators with theM2L in the frequency-domain, and with the support of low level optimizations;
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Figure 5.19: Comparison of the TD-FMM, with operators in the time-domain and theM2L in the frequency-domain,
against thematrix approach on one node using 2 nodes and 24 threads on each. In the Threaded FMM the parallelism is
done above the tree level by ScalFMM. For the Threaded-Kernel the parallelism is done inside the kernel above the Gauss
points of the unit spheres. TheMix FMM/Kernel is based on nested parallelization, 4 threads works on the tree levels and
each of them creates 6 threads inside the kernel. The captions of the different cases show the overhead of the FMMTD-
BEM against thematrix approach.

for example, the use of explicit SIMD intrinsics might lead to a great speedup (up-to 8 times faster).

In addition, it would be very useful to perform a theoretical study to evaluate the cost and real com-

plexity of the method even by restraining it to few test cases. It will tell us when it is advantageous

to use the FMM solver and from which number of unknowns. In terms of numerical optimiza-

tion, we do not play with different accuracies, and especially we do not look at the behavior if we

decrease the accuracy at the upper levels.

138



Conclusion

This thesis studies the development of an efficient solver for the time-domain BEM for the wave

equation on modern HPC architectures.

The original formulation is based on the SpMV and we explain how the performances of this

operator can be improved by permuting the matrices and creating dense blocks around the NNZ

values. We define the max-block-score heuristic which has a low cost and gives good permutations

without a 2OPT refining. In addition, we present advanced SpMV kernels for unaligned blocks on

CPU and a custom storage onGPU both with aggressive compile-time optimizations. Nevertheless,

the zero padding inside the blocks remains huge (up to 50% on CPU) and the effective Flop-rate

of our kernels decreases by the same proportion. Besides, we deal with a set of matrices and

finding a single ordering for all of them to avoid the permutation of the vectors appears extremely

complex. Therefore, it appears clear that a SpMV-based solver is not appropriate especially to

target accelerators.

To improve the Flop/memory ratio, we propose a different computational order. We permute

the loops of the summation stage and obtain the slice matrices that have one dense vector per row.

We show that by working with ng summation vectors together we have to load d+ ng + d× ng data
to perform ng × 2d Flop (with d the length of the dense vector on the row) in the so-called multi-

vectors/vector product. Naive implementations of this operator do not have good performances.

On the CPU, it is mandatory to use SIMD operands explicitly even if it leads to a more complex

algorithm. Moreover, we provide a kernel in assembly and show that it is pertinent to increase

the registers usage. The SIMT and hardware specificities of the GPU make the data blocking and

loop unrolling imperative. We present two methods to extract blocks from the slice matrices, but

only the Contiguous-Blocking can be used in realistic simulations. In fact, this method generates

blocks with few extra-zero padding, it is easy to parametrize and it achieves a high Flop-rate even

for small block widths. Based on these kernels, our matrix approach solver is parallelized using

a hybrid MPI/OpenMP strategies over homogeneous or heterogeneous nodes. A new balancing

heuristic successfully balances the summation inside a heterogeneous node, and our application

has a good parallel efficiency up to 30 homogeneous nodes and 8 heterogeneous nodes with 4
GPUs each. However, the call to the linear solver for the matrixM0 becomes the bottleneck as the

number of node increases. In fact, we have a small number of unknowns, an important number

of nodes, and we solve the same system several times which is not a classic usage of the state-of-

the-art linear solvers. Moreover, the generation of the matrices is finally more expensive than the

solve/computation, and both stages have a quadratic complexity. Therefore, our study looks at the

potential benefit of the FMM in our TD-BEM.

To create our FMM based solver, we work on the FMM algorithm as a generic technique, and
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we describe various parallelization strategies. Starting from a sequential FMM, we incorporate

the parallel-for work division and improve the expression of the parallelism until a pure task-based

FMM over a runtime system. This tasks-and-dependencies approach comes with two mains prob-

lematics related to the expression of the dependencies and the data structure. We show that the

FMM is naturally described using commutative operations even if this propriety is not widespread

among the runtime systems. We present the group-tree which is a tree data structure made for the

FMMover a runtime system; it relies on plain-old data that can bemoved easily betweenmemories,

it separates the symbolic/multipole/local parts, and it allows to parametrize the blocking granular-

ity. We extend our shared memory implementations with two distributed memory parallelization

strategies. The first relies on a classic MPI/OpenMP development with a communication hiding

system. The second extends the tasks-and-dependencies for distributed memory, and we explain

how this is possible once there is a system to manage the calls to theMPI functions asynchronously.

The performance results are diverse. The parallel-for and the tasks-and-dependencies methods on

shared memory, and the hybrid MPI/OpenMP and StarPU-MPI on distributed memory are all

competitive. However, for small test cases the runtime overhead makes the OpenMP approaches

more appropriate.

We attempt to reduce the complexity of the matrix approach using the FMM in the summation

stage. The underlying kernel is complex and asks for various choices in its implementation and

its parametrization. From our results, the pt parameter must be carefully chosen otherwise the

complexity might increase dramatically. The time-shi operation is widely used and is critical for

the accuracy and the performance. This is one of the reasons that make the frequency-domain

operators much slower than the time-domain ones. As expected, using the FMM reduces the

cost of the matrix generation which is the dominant stage of the matrix approach. However, our

FMM implementation is 1.4 times slower than the matrix approach such that the total time is

not improved with the FMM up-to 10 012 unknowns. The classical strategies are not sufficient

to parallelize this kernel, and we need two levels of parallelism; one in the FMM and one in the

operators.

From this preliminarily results, we need a theoretical study to know if the FMMmethod will lead

to better performance for larger problems. It is a difficult question, and to provide the first answer

a complexity study should be done on a defined test case. In the implementation side, our FMM

kernel is not highly optimized and using SIMD instructions or a different interpolation scheme

could potentially reduce the execution time. Finally, we do not assess in details our TD-FMM on

distributed memory, but it will certainly open new questions regarding the balancing strategies

between the nodes and inside the nodes at the top of the tree.
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Perspectives

The results of our matrix approach point-out that, when the number of node increases, the linear

solver becomes a critical component. Therefore, we have to find the best existing solver or to

develop a new one that matches the problem specificities: the small dimension of thematrix, a large

number of nodes and up-to thousands of solves. Iterative solvers are certainly well adapted, but

the gain will also depend on the underlying parallelization. In fact, we show that our configuration

is on the limit of the sparse solvers and that increasing the number of nodes does not decrease the

solve time. One possible improvement is to reduce the number of communications by computing

the same solve in several subgroups of processes. For a given problem, if a solver gives its best

performance with m processes, we create np/m subgroups of processes. Therefore, there will be

one global reduction aer the summation stage, but then only the processes inside a subgroup will

communicate during the solve and for the broadcast of the result.

We should assess the robustness of our FMM hybrid parallelization algorithms using a large

number of cores/nodes. In addition, we now have a stable StarPU-based implementation for dis-

tributed homogeneous architectures, but the main advantage of using StarPU is to incorporate

accelerators easily. Therefore, a future work will be to implement the P2P and the M2L for our

fastest approximation kernel in OpenCL to target both Inel Xeon Phis and NVidia GPUs. In a dif-

ferent direction, it would be interesting to implement an adaptive FMM. In fact, some problems can

be computed faster if the depth of the tree is variable and directly mapped on the particles/mesh

density. However, the parallelization of an adaptive FMMwith the tasks-and-dependencies scheme

will be challenging and potentially require a new tree data-structure to reduce the number of de-

pendencies.

Our BEM FMM solver can be optimized at several levels. From our results, the best configura-

tion is obtained by mixing the TD operators with the FD M2L. Therefore, the next developments

should focus on these operators and to optimize them using vectorization and an appropriate data

structure. Applying the vectorization over on the vectors in the time direction might not give effi-

cient results. On the other hand, we take advantage of the fact that the same operation is applied

to all the functions defined over the unit sphere. Therefore, the best pattern will be to block the

vectors in the sphere discretization direction by the size of the SIMD data-type. At the algorithm

level, we always move downward the results of theM2L: in our incomplete FMM algorithm, when

we compute theM2L at level l, we also compute the L2L from level l to h−2. Nevertheless, we can
reduce the computational cost and the memory footprint by transferring only a part of the data.

Finally, the memory footprint of the M2L transfer matrices increases with the size of the problem

such that it might become a critical issue. We can imagine finding a relation between the different

matrices in order to reduce the memory occupancy even if it implies a computational extra cost.
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For example, if there is a symmetry or a rotation property, we may succeed to have fewer matrices

and to generate the appropriate values on the fly.
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This section introduces the mathematical details of our problem formulation. The given prob-

lem description and formulation have been taken from [3] and the TD formulation was originally

introduced in the context of electromagnetism by [2].

A.1 Problem Formulation

Ω

Γ

n Ω+

uinc

Figure A.1: Problem domains

The variable uinc is an incident wave given by the problem definition and the aim is to find the

reflection of the wave over the object Ω of boundary Γ. We consider the problem in a fluid and we

name c the wave velocity in the fluid and n⃗ the unit norm in the exterior of the boundary. In the
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exterior domain Ω+, the problem P+ is to find u+(x, t) solution of

(P+)



Δu+ − 1
c2
∂2u+
∂t2

= 0 in Ω+ × R+,

∂u+
∂n − 1

cη
∂u+
∂t = −(∂uinc

∂n − 1
cη

∂uinc
∂t ) in Γ× R+,

u+(x, 0) = 0 in Ω+,

∂u+
∂t (x, 0) = 0 in Ω+.

(A.1)

We associate to P+ a problem P− in the interior domain of Ω called Ω−: find u−(x, t) such as

(P−)



Δu− − 1
c2
∂2u−
∂t2

= 0 in Ω− × R+,

∂u−
∂n − 1

cη
∂u−
∂t = −(∂uinc

∂n − 1
cη

∂uinc
∂t ) in Γ× R+,

u−(x, 0) = 0 in Ω−,

∂u−
∂t (x, 0) = 0 in Ω−.

(A.2)

We denote by Φ and p the tangential jumps of u and ∂u/∂n on Γ defined byΦ(x) = u−|Γ(x, t)− u+|Γ(x, t) x ∈ Γ, t ≥ 0,

p(x) =
(
∂u−
∂n

)
|Γ
(x, t)−

(
∂u+
∂n

)
|Γ
(x, t) x ∈ Γ, t ≥ 0.

(A.3)

Rather than solving the problem on the whole space, we write it on the surface Γ. Let introduce
the following surfacic operators

Sp(x, t) = 1
4π
∫
Γ
p(y, t− |x− y|/c)

|x− y| dy,

Kp(x, t) = 1
4π
∫
Γ

∂
∂nx

p(y, t− |x− y|/c)
|x− y| dy,

K′Φ(x, t) = 1
4π
∫
Γ

∂
∂ny

Φ(y, t− |x− y|/c)
|x− y| dy,

DΦ(x, t) = 1
4π
∮
Γ

∂2

∂nx∂ny
Φ(y, t− |x− y|/c)

|x− y| dy.

(A.4)

Then, p and Φ are solutions in Γ× R+ of(Kp− DΦ) + 1
2cη

∂Φ
∂t = −∂uinc

∂n ,

∂
∂t(Sp− K′Φ) + cη

2 p = −∂uinc
∂t .

(A.5)

Let introduce a new variable

P(x, t) =

c
∫ t
0 p(x, τ)dτ t ≥ 0,

0 t < 0.
(A.6)

We replace p by P in Equation A.5, and multiply the first equation by −c to obtain our formula-
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tion problem 
∂
∂t(S

∂tP
c − K′Φ) + η

2∂tP = −∂uinc
∂t ,

cDΦ− K∂P
∂t − 1

2η
∂Φ
∂t = c∂uinc

∂n .
(A.7)

A.2 Weak Formulation

The weak formulation of Equations A.7 are classically obtained by multiplying by ∂Ψ/∂t for the
first one to obtain Equation A.8, and the second by q which lead to Equation A.9.

−
∫
R

∫
Γ×Γ

∂

∂nx
∂tP(y, t− |x− y|/c)

4π|x− y|
∂Ψ
∂t

(x, t)dxdydt

− 1
c

∫
R

∫
Γ×Γ

n⃗(x).⃗n(y)
4π|x− y|

∂2Φ
∂t2

(y, t− |x− y|
c

)
∂Ψ
∂t

(x, t)dxdydt

− c
∫
R

∫
Γ×Γ

1
4π|x− y|

r⃗otΓΦ(y, t−
|x− y|

c
)r⃗otΓ

∂Ψ
∂t

(x, t)dxdydt

− 1
2η

∫
R

∫
Γ

∂Φ
∂t

(x, t)
∂Ψ
∂t

(x, t)dxdt

=

∫
R

∫
Γ
c
∂uinc
∂n

(x, t)
∂Ψ
∂t

(x, t)dxdt.

(A.8)

1
c

∫
R

∫
Γ×Γ

1
4π|x− y|

∂2P
∂t2

(y, t− |x− y|/c)q(x, t)dxdydt

−
∫
R

∫
Γ×Γ

∂

∂t
∂

∂ny
Φ(y, t− |x− y|/c)

4π|x− y|
q(x, t)dxdydt

+
1
2

∫
R

∫
Γ
∂tP(x, t)q(x, t)dxdt

=

∫
R

∫
Γ
−∂uinc

∂t
(x, t)q(x, t)dxdt.

(A.9)

These two equations gives the right expression of the different operators involved in the problem.

A.3 Discretizations

Time Discretization. The time interval [0,T] is discretized by a uniform time step Δt. The time

points are noted by tn = nΔt and we consider a linear approximation in time. The basis functions

are written γn(t) (n ≥ 1) and illustrated by Figure A.2a. We also introduce the function basis χn(t)
(n ≥ 0) presented in Figure A.2b. Then we obtain the following relation for the time derivatives

of the basis functions 
∂γn
∂t = 1

Δt [χn − χn+1]

∂2γn
∂t2

= 1
Δt [δtn+1 − 2δtn + δtn−1 ].

(A.10)
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Figure A.2: Basis functions.

Space Discretization. The problem is discretized in space by a P1 finite element method (Fig-

ure A.3b). The surface Γ of the object is approximated by a triangulation Τh composed by NT

triangular elements and NS vertices. For the function Φ(x, t), which represents the pressure jump,

we use a discretization by a linear polynomial in space. Each basis function ϕi is associated to a

vertex Si for 1 ≤ i ≤ NS is defined byϕi(Sj) = δij,

ϕi is P1 on each triangle.
(A.11)

Therefore, in a triangle, ϕj(M) is the barycentric coordinate ofM on the vertex j. For the function
p(x, t), which represents the normal derivative of the pressure, we consider a constant approxima-

tion (P0) on each triangle. The basis functions are pj with 1 ≤ j ≤ NT. The characteristic function

of the triangleTj takes the value 1 on the triangleTj and 0 on the others as presented in Figure A.3a.

0

0

T
j

0 1

(a)P0 discretization

0

0

0

0
0

0

S
j

1

(b)P1 discretization

Figure A.3: Discretizations.
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A.4 Notation

The functions Φ and P are respective solutions of Equation A.8 and Equations A.9 and are ap-

proximated by the following expansionsΦh(x, t) =
∑

1≤j≤NS

∑
m≥1 a

m
j γm(t)ϕj(x),

Ph(x, t) =
∑

1≤j≤NT

∑
m≥1 b

m
j γm(t)pj(x).

(A.12)

We denote by Am and Bm, the vectors of Φ and P respectively, a time tm{
Am = [amj ]1≤j≤NS and Bm = [bmj ]1≤j≤NT . (A.13)

Finally, we consider the test functions Ψ and q given by∂Ψ
∂t (x, t) = χn(t)ϕi(x)

q(x, t) = χn(t)pi(x).
(A.14)

A.5 Rigid Object Discretization

If we first focus on a rigid objectΩ (constant in time), the term P and η are removed and the system

becomes

− 1
c

∫
R

∫
Γ×Γ

n⃗(x).⃗n(y)
4π|x− y|

∂2Φ
∂t2

(y, t− |x− y|
c

)
∂Ψ
∂t

(x, t)dxdydt

− c
∫
R

∫
Γ×Γ

1
4π|x− y|

r⃗otΓΦ(y, t−
|x− y|

c
)r⃗otΓ

∂Ψ
∂t

(x, t)dxdydt

= c
∫
R

∫
Γ

∂uinc
∂n

(x, t)
∂Ψ
∂t

(x, t)dxdt.

(A.15)

A.6 Interaction Matrices

From the le hand-side, with basis function Φ(x, t) = ϕj(x)γn(t) and test function ∂Ψ/∂t(x, t) =
ϕi(x)χm(t) we obtain

− 1
c

∫
Γ×Γ

n⃗(x).⃗n(y)
4π|x− y|

ϕi(y)ϕi(x)
[∫

R

∂2γn

∂t2
(t− |x− y|

c
)χm(t)dt

]
dxdydt

− c
∫
Γ×Γ

1
4π|x− y|

r⃗otΓϕi(y)r⃗otΓϕj(x)
[∫

R
γn(t−

|x− y|
c

)χm(t)dt
]
dxdydt.

(A.16)

From γn and χm definitions and performing an integration by part, the first time integral becomes
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∫
R

∂2γn

∂t2
(t− |x− y|

c
)χm(t)dt

=

∫
R

1
Δt
[
δtn+1 − 2δtn + δtn−1 ]

]
(t− |x− y|

c
)χm(t)dt

=
1
Δt

[
χm(tn+1 +

|x− y|
c

)− 2χm(tn +
|x− y|

c
) + χm(tn−1 −

|x− y|
c

)

]
=

1
Δt

[
χ1(

|x− y|
c

− tm−n−2)− 2χ1(
|x− y|

c
− tm−n−1) + χ1(

|x− y|
c

− tm−n)

]
.

(A.17)

The value of this integral depends only of the difference between indexes m and n, from here we

have k = m − n. The term χ1(|x − y|/c − tk) reduces the integration on Γ × Γ on the values of x
and y such as |x− y|/c ∈ [tk, tk + Δt]. The second time integration writes∫

R
γn(t−

|x− y|
c

)χm(t)dt =
∫ Δt

0
γ1(t+ tk −

|x− y|
c

)dt. (A.18)

Since γ1 is not null between 0 and 2Δt, this integration is not null for all values t′ = tk−|x−y|/c
inside −Δt and 2Δt and is equal to

1
2Δt(t

′ + Δt)2if t′ ∈ [−Δt, 0] (Figure A.4a)
1

2Δt((t
′ + Δt)2 − 3t′2)if t′ ∈ [0,Δt] (Figure A.4b)

1
2Δt(2Δt− t′)2if t′ ∈ [Δt, 2Δt] (Figure A.4c).

(A.19)

0

1

Δt 2Δt-Δt t' t'+Δt

(a)−Δt ≤ t′ ≤ 0

0

1

Δt 2Δt-Δt t' t'+Δt

(b) 0 ≤ t′ ≤ Δt

0

1

Δt 2Δt-Δt t' t'+Δt

(c)Δt ≤ t′ ≤ 2Δt

Figure A.4: Integration of ϕ1 between t′ and t′ + Δt

Finally, we obtain that the interaction term between the functions ϕj(x)γn(t) and ϕi(x)χm(t) de-
pends only on (i, j) in space and k = m− n in time. We call Mk the matrix of dimension NS × NS
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whose element (i, j) is given by the Equation A.16. More precisely, we have

Mk
ij = − 1

cΔt
(
∫ ∫

tk≤ |x−y|
c ≤tk+1

n⃗(x).⃗n(y)
4π|x− y|

ϕi(x)ϕj(y)dxdy

− 2
∫ ∫

tk−1≤ |x−y|
c ≤tk

n⃗(x).⃗n(y)
4π|x− y|

ϕi(x)ϕj(y)dxdy

+

∫ ∫
tk−2≤ |x−y|

c ≤tk−1

n⃗(x).⃗n(y)
4π|x− y|

ϕi(x)ϕj(y)dxdy

+

∫ ∫
tk≤ |x−y|

c ≤tk+1

r⃗otϕi(x)r⃗otϕj(y)
4π|x− y|

c2

2
(tk+1 −

|x− y|
c

)2

+

∫ ∫
tk−1≤ |x−y|

c ≤tk

r⃗otϕi(x)r⃗otϕj(y)
4π|x− y|

c2

2
(2Δt2 − (tk+1 −

|x− y|
c

)2 − (tk−1 −
|x− y|

c
)2)

+

∫ ∫
tk−2≤ |x−y|

c ≤tk−1

r⃗otϕi(x)r⃗otϕj(y)
4π|x− y|

c2

2
(tk−2 −

|x− y|
c

)2)
.

(A.20)

With k < 0 the integration domain is empty and the Mk matrices are nulls, this expresses the

fact that the test function ϕi(x)χm(t) does not interact with the functions ϕj(x)γn(t) later in time

(n > m). This is an essential property to solve the system since it allows a step by step solve in

time.

A.7 Right Hand-side

The right hand-side writes

lni = c
∫
tn−1≤t≤tn

∫
Γ

∂uinc
∂n

(x, t).ϕ(x)dxdt. (A.21)

In this formula, i is vertex id (1 ≤ i ≤ NS) and n ≥ 1 is a time step. If uinc is a wave coming from

the direction r⃗ (and not propagating in the direction r⃗), then it is written uinc(x, t) = f(t− t0+ r⃗.⃗x/c)
where f is the shape of the signal (Gaussian, sinusoid, ...) and t0 is adjusting the time phase. We

then get
∂uinc
∂n

(x, t) = n⃗.∇⃗uinc(x, t) =
n⃗.⃗r
c
f ′(t− t0 +

r⃗.0⃗x
c

). (A.22)

Consequently, lni is given by

lni =
∫
Γ
n⃗.⃗r [uinc(x, tn)− uinc(x, tn−1)] ϕ(x)dx. (A.23)
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B.1 Polynomials

In the FMM-TD operator, in Section 5.1, we use the Legendre polynomial Pl and we use the

Associate Legendre polynomial as a base for a second polynomial written Qm
l .

B.1.1 Legendre Polynomial Formula

The definition of Legendre polynomial Pl is given in [109] by the following definition:

(1− x2)P′′
l (x)− 2xP′

l(x) + l(l+ 1)Pl(x) = 0 , l ∈ N

Pl(1) = 1

Pl(−1) = (−1)l .

(B.1)

This formulation expresses the polynomial of order l based on its first and second derivative.
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The computation of Pl can be obtain using the recurrence relation, ∀l ∈ N and ∀x ∈ [−1, 1]:

P0(x) = 1

P1(x) = x

Pl(x) =
2l− 1

l
xPl−1(x)−

l− 1
l

Pl−2(x), l ≥ 2 .

(B.2)

A common alternative is to use the Rodrigues’ formula which is also the basis of the associated

Legendre polynomial, ∀l ≥ 0 and ∀x ∈ [−1, 1]:

Pl(x) =
1
2ll!

dl

dxl
(x2 − 1)l (B.3)

We remind that for all l we have
|Pl(x)| ≤ 1 .

B.1.2 Associated Legendre Polynomials

The associated Legendre polynomial is indexed by two variables l and m with m ≤ l.
Using the Rodrigues’ formula of the associated Legendre polynomial Pm

l , with ∀(l,m) ∈ N2 and

0 ≤ m ≤ l we have:
Pm
l (x) = (−1)m(1− x2)m/2

dm

dxm
Pl(x) .

It can be extended to negative m (but still |m| ≤ l) by

P−m
l (x) = (−1)m

(l− m)!
(l+ m)!

Pm
l (x) .

In order to compute the polynomial values we can use the recurrence
(l− m)Pm

l (x) = (2l− 1)xPm
l−1 − (l+ m− 1)Pm

l−2

Pm
m(x) = (−1)m(1− x2)m/2(2m− 1)!!

Pm
m+1(x) = (2m+ 1)xPm

m(x) .
(B.4)

With n!! the product of all even integers that are less than or equal to n.
This is written differently in [103]

(l− m)Pm
l (x)− (2l− 1)xPm

l−1 + (l+ m− 1)Pm
l−2 = 0

Pm
m(x) = (−1)m(1− x2)m/2 (2m)!2mm!

Pm
m+1(x) = (2m+ 1)xPm

m(x) .
(B.5)

The major difference is the expression of (2m− 1)!! = (2m)!
2mm! .
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B.1.3 Qm
l Polynomial

From [103; 104], we have the definition of the Qm
l polynomial

Yl,m(θ,φ) = Cl,mPm
l (cosθ)eimφ

Cl,m =
√

2l+1
4π

(l−m)!
(l+m)!

Qm
l (cosθ) = Cl,mPm

l (cosθ) .

(B.6)

where Yl,m are the spherical harmonics.

We can express Qm
l by

√
l2 − m2Qm

l (x)− (2l− 1)xQm
l−1 +

√
(l− 1)2 − m2Qm

l−2 = 0 , 0 ≤ m ≤ l

Qm
m(x) = (−1)m(1− x2)m/2

√
(2m)!

2mm!

Qm
m+1(x) =

√
2m+ 1xQm

m(x) .

(B.7)

This expression does not include the coefficient
√

2l+1
4π . For m < 0 we obtain by parity Q−m

l (x) =
(−1)mQm

l (x).

B.2 Unit Sphere Discretization

B.2.1 Basic Discretization

We remind that Yl,m can be written, with Cl,m a constant, by

Yl,m(θ,φ) = Cl,mPm
l (cosθ)e

imφ

Cl,m =

√
2l+ 1
4π

(l− m)!
(l+ m)!

.
(B.8)

The discretization of the unit sphere has been taken from [103]. The objective is to find a grid

of (φi, θj) to integrate exactly all the spherical harmonics until rank 2L. Each pair has a weight

given by ωk = ωφ
i .ωθ

j .

For (m, l) ̸= (0, 0) we have the condition∑
k∈I

ωkYl,m(s⃗k) =
∑
i,j

ωθ
i .ω

φ
j P

m
l (cosθi)e

imφj

=

(∑
i

ωθ
i P

m
l (cosθi)

)(∑
j

ωφ
j e

imφj

)
= 0 .

(B.9)

For φ we need a uniform distribution
∑

j ω
φ
j e

imφj = 0 for m ̸= 0 with −2L ≤ m ≤ 2L. We
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choose a uniform distribution on 2L+ 1 points on [0, 2π]{
φj =

2π
2L+1 j , 0 ≤ j ≤ 2L,
ωφ

j = 2π
2L+1 .

(B.10)

We obtain the geometric relation

∑
0≤j≤2L

ωφ
j e

imφj =
2π

2L+ 1

∑
0≤j≤2L

(eim
2π

2L+1 )j =
2π

2L+ 1
1− (eim

2π
2L+1 )2L+1

1− (eim
2π

2L+1 )
. (B.11)

The value is 0 if m ̸= 0 and is 2π if m = 0.
In order to cover all the polynomials of degree 2L we take

θi =
π(i+ 1/2)
2L+ 1

, 0 ≤ i ≤ 2L . (B.12)

The weights are obtained by solving the linear system∑
0≤i≤2L

Pl(cosθi)ωθ
i = δl,02 ∀l = 0, ..., 2L . (B.13)

The grid size is of dimension (2L+ 1).(2L+ 1).

B.2.2 Advanced Approach

Thismethod reduces the number of discretization points in the θ direction and is described in [110].
It gives (L+ 1).(2L+ 1) Gauss points: (L+ 1) θ and (2L+ 1) φ which are similar to the previous

method.

We first build the tridiagonal matrix T of dimension L× L{
Ti,i = 0

Ti,i+1 = Ti+1,i =
i√

4i2−1
, i = 1, ...,L− 1 .

(B.14)

Then we compute the eigenvalues λi and their respective eigenvectors Vi. Finally, we obtain the

different θ and their corresponding weights{
cos(θi) = λi
ωθ

i = 2(Vi)
2
0 .

(B.15)

B.3 Discret Fast Fourier Transform (DFFT)

We refer to [111; 112] to have more details on the underlying fast implementations.
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B.3.1 Discrete Fourier Transform (DFT)

From a discrete signal fn with data point at n = 0, 1, 2, ...,N− 1 the discrete Fourier transform is

given by

Fk =
N−1∑
n=0

fne−2iπnk/N . (B.16)

The inverse DFT is given by

fn =
1
N

N−1∑
k=0

Fke2iπnk/N . (B.17)

From Euler’s relation e±ia = cos(a)± isin(a), we have a possible implementation given by

Fk =
N−1∑
n=0

fncos(kω0n)− ifnsin(kω0n)

fn =
1
N

N−1∑
k=0

Fkcos(kω0n) + iFksin(kω0n) .

(B.18)

The coefficient ω0 = 2π/N. However, this is a 0(N2) algorithm and lower complexity methods

have been proposed since.

B.3.2 Real DFT

When computing the DFT of a full real discrete signals we obtain a complex discrete results and

we have

f → F

F(k) = F∗(N/2− k) .
(B.19)

Here, ∗ stands for conjugate. This properties allow to optimize the DFT in time and space. When

the DFT is from a real signal, we store only half of the resulting complex vector and if we need F(k)
with k > N/2 we compute the conjugate of F(N/2 − k). This relation is used when computing

back a complex signal, with inverse DFT, into a real signal.

B.3.3 Discrete Fast Fourier Transform (DFFT)

Many algorithms reduce the complexity of the DFT to O(Nlog2N) as the Sande-Tukey or Cooley-
Tukey algorithms. Extremely efficient libraries exist to compute DFT in real and complex numbers

and one of the more advanced library is FFTW and has been presented in [108].
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B.3.4 Convolution Product

The discrete convolution product is defined as

(f ∗ g) ≡
+∞∑

m=−∞

f[m]g[n− m] =
+∞∑

m=−∞

f[n− m]g[m] . (B.20)

Both sources signal are discrete and have a finite number of values. If f has a values and g has b
values, the result will have a+ b− 1 values. In term of discrete relation we have

(f ∗ g)[i] =
min(i,a−1)∑

j=max(0,i−b+1)

f[j]g[i− j], 0 ≤ i < a+ b− 1 . (B.21)

B.4 Differentiation

B.4.1 Derivatives of the Legendre Polynomial

The Legendre polynomial Pl is tied to its derivatives and we get from [113] the definition of the

first and the second derivatives with the relation

(x2 − 1)P′
l(x) = lxPl(x)− lPl−1(x) . (B.22)

Which gives us

P′
l(x) =

lxPl(x)− lPl−1(x)
(x2 − 1)

. (B.23)

This is directly a recurrence relation which has the starting values P′
0(x) = 0 and P′

1(x) = 1.
The second derivative is expressed using Legendre and its first derivative

(1− x2)P′′
l (x)− 2xP′

l(x) + l(l+ 1)Pl = 0

P′′
l (x) =

2xP′
l(x)− l(l+ 1)Pl

(1− x2)
.

(B.24)

Again this is a recurrence formula where we have the starting values P′′
0(x) = 0 and P′′

1 (x) = 0.

156



B.4.2 Taylor Series Differentiation

First derivatives.

f′(xi) =
f(xi+1)− f(xi)

h
+ O(h)

f′(xi) =
−f(xi+2) + 4f(xi+1)− 3f(xi)

2h
+ O(h2)

f′(xi) =
f(xi)− f(xi−1)

h
+ O(h)

f′(xi) =
3f(xi)− 4f(xi−1) + f(xi−2)

2h
+ O(h2)

f′(xi) =
f(xi+1)− f(xi−1)

2h
+ O(h2)

f′(xi) =
−f(xi+2) + 8f(xi+1)− 8f(xi−1) + f(xi−2)

12h
+ O(h4) .

(B.25)

Second derivatives.

f′′(xi) =
f(xi+3)− 3f(xi+2) + 3f(xi+1)

h3
+ O(h)

f′′(xi) =
−3f(xi+4) + 14f(xi+3)− 24f(xi+2) + 18f(xi+1)− 5f(xi)

2h3
+ O(h2)

f′′(xi) =
f(xi)− 2f(xi−1) + f(xi−2)

h2
+ O(h)

f′′(xi) =
2f(xi)− 5f(xi−1) + 4f(xi−2)− f(xi−3)

h2
+ O(h2)

f′′(xi) =
f(xi+1)− 2f(xi) + f(xi−1)

2h
+ O(h2)

f′′(xi) =
−f(xi+2) + 16f(xi+1)− 30f(xi) + 16f(xi−2)− f(xi−2)

12h
+ O(h4) .

(B.26)

B.5 Interpolation and Time Shiing

Having a signal g(t) in the time domain, a time shiing leave the signal intact (same shape and

scale) but shi it in the time direction. Shiing g(t) by a time Δs gives

f(t) = g(t− Δs) . (B.27)

With a discrete signal g[t] the same formula is used if Δs is a multiple of Δx the time step between

the discrete values. In this case, wemove the values in a different positions. In case of a finite signal,

a choice has to be made for the values outside the interval and it is usual to consider that they are

zero. For a discrete finite signal of N values shied by s = Δs/Δt

f[t] = g[t− s]∀0 ≤ s < N

f[t] = 0 else .
(B.28)
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But in most cases the shi is not a multiple of Δt and thus the values written in f(t) has to be

interpolated from the values in g(t).

B.5.1 Linear Interpolation

The more basic interpolation is to compute the shied value using two discretized values and the

appropriate weights. From a discrete signal g of time step Δt and length N and a shi Δs the result
is given by

f[t] = g[t− s](1− c) + g[t− s+ 1]c, 0 ≤ t− s+ 1 < N . (B.29)

Here, s is the largest integral value not greater than Δs/Δt and c = s−Δs/Δt is a coefficient ∈ [0, 1]
and is the weight to balance between the two source values.

B.5.2 Cubic Spline Interpolation

A spline is composed of piecewise continuous polynomial functions, it is of degree n if it is com-

posed of polynomials of degree n. Each polynomial is used to connect two contiguous points. A

linear spline connect the discrete points using straight lines, a quadratic spline uses quadratic poly-

nomials etc. To ensure a smooth aspect between each polynomials that connect the same point,

they must have the same derivative up to a given degree. In a quadratic spline the polynomials

must have the same first derivative and in a cubic spline the polynomials must also have the same

second derivative. From N points (xk, yk) with 0 ≤ k < N, and Sk the kth polynomials, we have

Sk(xk) = yk. For the continuity we have Sk(xk+1) = Sk+1(xk+1) and the equality implies also for

the derivatives: S′k(xk+1) = S′k+1(xk+1) and in case of cubic spline S′′k (xk+1) = S′′k+1(xk+1). But find-

ing the coefficients of the polynomials requires to solve a sparse linear system that is why we use

Hermitian spline. Among the general cubic spline, a Hermitian spline refers to the single cubic

polynomial.

Having two point (x0, p0) and (x1, p1) and knowing the derivatives on these points m0 and m1

respectively, a Hermitian spline is a cubic polynomial P with P(x0) = p0, P(x1) = p1, P′(x0) = m0

and P′(x1) = m1. This polynomial is given by

h00(t) = 2t3 − 3t2 + 1

h10(t) = t3 − 2t2 + t

h01(t) = (−2)t3 + 3t2

h11(t) = t3 − t2

P(t) = h00(t)p0 + h10(t)m0 + h01(t)p1 + h11(t)m1 .

(B.30)

The derivatives of discrete points can be obtained from Taylor expansions.
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B.5.3 Interpolation with FFT

There is a relation between a time shiing of a real function and its Fourier transform

f(t− t0) ⇔ F(k)e2πikt0 (B.31)
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C.1 Modern CPU

The development of high-performance application must take into account the hardware specifici-

ties of the CPU. The key-points of modern CPU are the hierarchical memory structure and the

management of instructions; how the instructions are fetched and pipelined. We divide the CPU

in three parts which are shown in Figure C.1: the memory parts (composed by the buses and the

memory levels), the instruction part (the control unit) and the computation part (the execution

unit).

Memory

L2 Cache

Bus Interface

Instruction Cache L1 Cache

Control Unit Execution Unit

System bus

Figure C.1: CPU Schematic View
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Memory hierarchy. The fast memory is expensive, and moreover, it has to be close to the pro-

cessing units such that it is not viable to build a CPU with only this kind of memory. On the other

hand, the slow memory is cheap and can be incorporated in large quantity in a chip. Therefore,

the current strategy to hide the limited fast memory is to use a hierarchical memory with different

layers; from small and fast to large and slow. The levels between the processing units and the real
memory are called caches and their names are postfixed by the distance from the processing units.

It is usual to have 3 levels of cache named L1, L2 and L3. This hardware structure makes the

development of application difficult because the developers have very low control over the mem-

ory execution. While there exists some instructions to prefetch some data to a given layer or to

flush the caches, using these optimizations is difficult because the developers have a very limited

view on what happen in the memory and cannot really control the data movement. Moreover, sev-

eral hardware modules are responsible for the memory control and management which leads to

unpredictable behaviors. Therefore, developing an efficient application is not done by an explicit

memory control but by a development based on the hardware understanding and modeling.

During a program execution, the memory transfers are driven by two properties which are the

latency and the bandwidth. The latency is the time it takes for some Bytes requested from the

memory to arrive at the destination. The bandwidth is the number of Bytes that arrived together

by a data movement. If the latency is l and the bandwidth is b then it takes ≈ l + n/b to receive

n Bytes. The latency of modern CPUs is about 1ns for L1, 3 − 10ns for L2, 10 − 20ns for L3 and

50− 100ns for the main memory. The bandwidth is around 50GB per second for a CPU with four

channels.

Control Unit. The control unit is responsible for the program execution: what has to be executed

and when. It retrieves instructions from the program memory, decodes the instructions, retrieves

the data from memory and stores the results. The performance of an execution is driven by the

capacities of this module. It is now widespread for a control unit to support instruction prefetch

and decoding (pipelining), branch prediction, out of order execution and retirement. To prefetch

means to fetch (retrieve) a data or an instruction before they are needed by looking in advance at

what will be used. The decoder prepares data and instructions in a cache because it considers that

they will be used by the execution unit in a near future. However, a branch might lead to miss pre-

diction and in this case all the prepared material may be cleared. To reduce the number of branch

miss-predictions, the branch prediction unit uses advanced techniques as Deep branch prediction

(attempting to decode multiple paths), Dynamic data flow analysis and Speculative execution. The

out-of-order engine is able to analyze a large number of instructions and to find the independent

ones that can be executed. Then these different paths are saved using allocator, potentially modi-

fied by register renaming and managed by micro operation scheduler. The allocator unit ensures

that a buffer space is allocated properly for each instruction. The register renaming module uses

logical registers to process the instructions: instead of the general-purpose registers, it maps a real

register with a logical register which allows simultaneous access to the same register by multiple

instructions. The mapping is kept in the RAT register allocation table. The micro operation sched-
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uler determines if a micro operation is ready, which means that the input elements are ready, and

it maintains the program dependencies using several queues and ports.

The pipelining of the operations accelerates the execution. Without pipelining, if it takes L steps

to prepare and compute an instruction then it takes n.L to compute n instructions. If these steps

are independent because they work on different data they can be pipelined. The objective is to

keep the different steps busy by starting to process an instruction in the first stage without waiting

for the previous one to be completed. Such that with the pipelining, it takes n + L − 1 cycles

to compute n tasks. The pipelining is helped by the speculative mechanism which finds several

instructions that can be executed at the same time or what will be the next instructions. Therefore,

even so the current instruction is a test which might change the execution path, the speculative

module gives a possible next instruction and somehow it allows to compute entirely or partially

a result. However, the prediction may fail and in this case the speculative operation would have

been done for nothing. These several mechanisms belong to the instruction-level parallelism (ILP)

techniques. While they are managed by hardware modules, the Assembly instructions and thus

the soware-development side drastically influences their success.

Execution units. These modules execute the instructions and there might be several execution

units per processor working simultaneously. It is usual to have separated arithmetic and logic

unit (ALU) each dedicated to a specific type of operations: simple integer operations, complex

integer operations and floating-point operations. The boolean operations and simple integer op-

erations are done with low latency. The ALU for complex integer operations is responsible for

the multiplications, divisions and rotations of integer data type. The floating-point module sup-

ports operations on the floating-point types (single and double) and it is common for this module

to support the SIMD. The general-purpose registers store temporary data needed by the proces-

sor coming from computation results or from the main memory and their usage is a good help to

manage the instructions and the memory accesses.

Cache policies. There are usually 2 or 3 cache levels, and we talk of a cache block/line to define

the data copied from a upper cache into a lower level. When a part of the memory is requested

by an operation, it is loaded in the cache (if it is not already in it). More precisely, the cache

line which includes the requested address is stored in a deterministic part of the cache from a

mapping algorithm. The mapping is direct if there is only one place where the data go based on

their addresses, or set associative if there are k places where the data can go (it is said to be a k-way
and if k=1 it is a direct mapping). It is usual to use 4−way or 8−way set associative caches. The
associative algorithm to find the position for a cache line can be pseudo random, but it is clear that

contiguous data in memory should not use the same set. By definition the caches are smaller than

their respective upper-level memory, such that when a data is moved inside, we have to remove

another cache line. Inside a set, the replacement policy can be random too, but most CPU use a

variation of least recently used (LRU) algorithm; a cache line replaces the line in the set which has

not been used since the longest time. The objective is to have temporal locality and to reduce the
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cache misses (asking for a memory that is not in the cache) because the request will need to check

upper-levels and finally be more than 100 times slower.

If a data in the caches is modified, the system uses a policy to decide when the change is propa-

gated to the main memory. A write-through system directly writes back the modified block into the

memory; with this strategy, the main memory is always up to date with the latest modified version

in it. In the write-back strategy, a block is saved if it is pulled from the cache and is a modified

version of the main memory, or if it is loaded by another cache. To ensure cache coherence (when

data are written back, what to do if a data exists in multiple cache): the main approach is snooping

cache coherence. But it is also possible to use direct based cache coherence: in this protocol a di-

rectory is maintained up to date and store the status of each cache line (which caches are currently

holding a copy of the modified line). Several threads should not work on data that are on the same

cache line or it will imply false sharing; when a thread modifies a part of the line which is not used

by the other thread, the coherency protocol will still need to propagate the change.

Some special instructions load/prefetch non-temporal data into the lower cache and bypass the

intermediate caches. They should be used when data is access during a short period (or at least that

they should not be kept in the cache because we know they will be evicted/removed before their

next utilization). The hardware makes special optimization by knowing that some data should not

be kept in the cache.

Non-uniform memory access (NUMA). NUMA is a memory design where the shared memory is

distributed on the different processors of a machine with the consequence of a variable data-access

time. A delay (latency) comes from the distance between the processors and the memory hosts.

Especially, it is faster for a processor to ask for a data from its own memory rather than for a data

located in a remote memory. Cache coherency with a NUMA memory is even more complicated

because it adds an additional memory level. Dealing with NUMA effect is not an easy task, however

to reduce the effect, the allocation of the data should be distributed on the different memory node

and for example, when the threads are bound to a core, they should allocate their data on their

respective node. But when a large block is shared by all the threads, or if the execution choices

are made dynamically it is difficult to predict the good memory mapping.

Locality. The different modules and their respective behaviors lead to two different localities.

The temporal locality could be defined by: A data which is used now will certainly be used again.

This property is optimized by the LRU and the multi-layers memory. The spatial locality could

be defined by: The memory neighbor of a data that is used now will certainly be used too. This

property is ensured by the size of cache lines and the possible prefetch (load in advance) of next

closest values.

C.2 Single Instruction, Multiple Data (SIMD/SSE/AVX)

The processor frequencies have stopped increasing for several years but the manufacturers con-

tinue to push the peak performance by using multiprocessors, ILP and SIMD. The term SIMD
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refers to the concept of having multiple processing elements which perform the same operation

on multiple data simultaneously. The SIMD is a model introduced by the Flynn’s taxonomy clas-

sification where we also find SISD, MISD and MIMD. Historically, the first SIMD processors

were classified as vector-processors such that it is now common to use the word vectorization to

refer to the SIMD instruction sets (SSE/AVX). The usage of SIMD was motivated by the matrix

operation algorithms which are used by numerous applications but it is now applied to a width

range of domains (including non-numerical applications). The current SIMD instructions oper-

ate on a contiguous memory block which allows some energy-efficiency properties and facilitates

the memory transfer. In the rest of the discussion, the term SIMD refers to the current imple-

mentations (SSE/AVX). The SIMD instructions operate on objects of a defined size S; the SSE

standard deals with SSSE = 128 bit words and the AVX with SAVX = 256 bit words. This SIMD

word is divided into M scalar of a native data type, for example in SSE it contains M = 4 values

of 32 bits like int, float or M = 2 values of 64 bits like double. The SIMD instruction unit can

perform usual arithmetic computation (addition/subtraction/multiplication/division) but also ad-

vanced arithmetic operations (square root), special functions (minimum, maximum) or bit/word

manipulations (bit shis, bits arithmetic). A classic SIMD operation op is applied term-to-term on

two SIMD typed word a and b as c(i) = a(i) op b(i) for ∀i ∈ [1;M]. The SIMD words are stored

in the vector registers which are now equivalent to the general floating-point registers. The SIMD

instruction sets provide operands to manage the memory accesses to load one or several values or

to save an SIMD word into the main memory. The memory alignment is crucial to achieve high

performance and it is usual that the alignment is a multiple of S. If the memory is not aligned many

instructions are forbidden and should be replaced by more so but slower instructions. There

is a class of very common operations (as the horizontal sum) that are not supported natively by

the SIMD specifications and that sometime makes the development complicated to perform basic

tasks. For example, there is no instruction to merge/reduce all the values contained in an SIMD

word into a scalar value. Developing a code which takes advantage of the vectorization of the

processors is mainly done by four techniques:

• programming in a high level language with scalar values and delegate to the compiler the pos-

sible optimizations as presented in Section C.2.1.

• programming in a high level language with scalar values and give hints to the compiler regarding

the possible optimizations using pragma like OpenMP 4 SIMD specification

• programming in a high level language using intrinsic instructions and delegate the conversion

into Assembly to the compiler as presented in Section C.2.2.

• programming directly in Assembly and specify the SIMD operations and registers as presented

in Section C.3.

C.2.1 UBCOO SpMV in C++

Most of the compiled languages have the potential to use the SIMD units of a CPU but this ca-

pacity relies on the understanding of the code by the compiler and the type of algorithm. In fact,
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many algorithms are easily compatible with the SIMD structure which deals with contiguous data

. In the Code C.1, we present a C++ kernel to compute the UBCOO SpMV introduced in Sec-

tion 3.1.5. Without any specific optimizations, the compiler will create a binary which works on

most machines and will not use the SIMD capability. With Gcc, we can enable the use of certain

instruction sets (using direct flags like −msse or −mavx) or by specifying the target architecture

−march = X. Moreover, by activating a high level of optimization, the compiler is able to un-

roll loops and to adapt them in order to use SIMD instructions. In the code snippets, the size

of the block is templatized and is known at compile time. In addition, the leading dimension of

the blockValue is equal to BlockDim and is also known at compile time and the data accesses are

linear and regular such that the compiler should be able to use the SIMD appropriately. But as it

is shown in Section 3.1.6, the given results are disappointing and the compiler is not able to create

an efficient binary.

1 t emp l a t e < con s t i n t BlockDim , c l a s s ValueType >

2 vo i d BlockSpMV ( con s t ValueType b l o c k s [ ] , c on s t i n t b l o c k s I d x s [ ] , c on s t i n t nbBlocks ,

3 c on s t ValueType x [ ] , ValueType y [ ] ) {

4 f o r ( i n t i d xB l o ck = 0 ; i d xB l o ck < nbB locks ; ++ i d xB l o ck ) {

5 ValueType * _ _ r e s t r i c t _ _ ptrY = &y [ b l o c k s I d x s [ i d xB l o c k * 2 ] ] ;

6 c on s t ValueType * _ _ r e s t r i c t _ _ ptrX = &x [ b l o c k s I d x s [ i d xB l o c k * 2 + 1 ] ] ;

7 c on s t ValueType * _ _ r e s t r i c t _ _ b l o ckVa lue = &b l o c k s [ i d xB l o ck * BlockDim * BlockDim ] ;

8
9 f o r ( i n t i d xCo l = 0 ; i d xCo l < BlockDim ; ++ i dxCo l ) {

10 f o r ( i n t idxRow = 0 ; idxRow < BlockDim ; ++ idxRow ) {

11 ptrY [ idxRow ] += ptrX [ i dxCo l ] * b l o ckVa lue [ i d xCo l * BlockDim + idxRow ] ;

12 }

13 }

14 }

15 }

16

Code C.1: SpMV of block size 8× 8 in C++

C.2.2 UBCOO SpMV in C++ using Intrinsics

An intrinsic is an operand handled directly by the compiler which usually substitute the call by

a given code/instruction. The SIMD Assembly operands are usable using intrinsics and special

data types. Many documents and websites summarized the intrinsics but a great tool is hosted

by Intel Intrinsics Guide [114]. The SIMD intrinsic functions are named according to a logic

[size]_[operand]_[datatype], where size is _mm (SSE 128 bits), _mm256 (AVX 256 bits) or _mm512
(AVX2 512 bits). In the Code C.2, we show an example of our UBCOOSpMVusingAVX intrinsics

in C++. This code is for blocks of size 8×8 and we could have templatized the number of columns

in the block. We also could have templatized the number rows in the blocks (to a multiple of 8) but
it may not give the same performance. Here we consider that the memory address of the matrix

(blocks) is 64 Bytes aligned which allows to use faster load operands. From the performance result

in Section 3.1.6 this kernel is achieving a good Flop-rate. Developing a kernel in intrinsic is usually

sufficient to achieve the maximum performance regarding the Flop/word ratio. However, while we

can use the __register__ keyword to advise the compiler to store some variable in the registers or the
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__restrict__ keyword to avoid aliasing, the compiler is still in charge of most of the optimizations.

1 vo i d BlockSpMV_8_avx ( c on s t double b l o c k s [ ] , c on s t i n t b l o c k s I d x [ ] , c on s t i n t nbBlocks ,

2 c on s t double x [ ] , double y [ ] ) {

3 f o r ( i n t i d xB l o ck = 0 ; i d xB l o ck < nbB locks ; ++ i d xB l o ck ) {

4 double * _ _ r e s t r i c t _ _ pt rY = &y [ b l o c k s I d x [ i d xB l o c k * 2 ] ] ;

5 c on s t double * _ _ r e s t r i c t _ _ ptrX = &x [ b l o c k s I d x [ i d xB l o c k * 2 + 1 ] ] ;

6 c on s t double * b l o ckVa lue = &b l o c k s [ i d xB l o c k * 8 * 8 ] ;

7
8 __m256d res03 = _mm256_setzero_pd ( ) ;

9 __m256d res47 = _mm256_setzero_pd ( ) ;

10
11 f o r ( i n t i d xCo l = 0 ; i d xCo l < 8 ; ++ i dxCo l ) {

12 c on s t __m256d c o lV a l = _mm256_set1_pd ( ptrX [ i dxCo l ] ) ;

13
14 re s03 = _mm256_fmadd_pd ( co lVa l , _mm256_load_pd(& b lo ckVa lue [ i d xCo l * 8 ] ) , r e s03 ) ;

15 re s47 = _mm256_fmadd_pd ( co lVa l , _mm256_load_pd(& b lo ckVa lue [ i d xCo l * 8+4 ] ) , r e s47 ) ;

16 / / Or i f fmadd i s not a v a i l a b l e :
17 / / re s03 = _mm256_add_pd ( _mm256_mul_pd ( co lVa l , ...

_mm256_load_pd(&b lockVa lue [ i d xCo l * 8 ] ) ) , r e s03 ) ;
18 / / re s47 = _mm256_add_pd ( _mm256_mul_pd ( co lVa l , ...

_mm256_load_pd(&b lockVa lue [ i d xCo l *8+4] ) ) , r e s47 ) ;
19 }

20
21 _mm256_storeu_pd ( ptrY , _mm256_add_pd ( _mm256_loadu_pd ( pt rY ) , r e s03 ) ) ;

22 _mm256_storeu_pd ( pt rY +4 , _mm256_add_pd ( _mm256_loadu_pd ( pt rY +4) , r e s47 ) ) ;

23 }

24 }

25

Code C.2: SpMV of block size 8× 8 in AVX intrinsics

C.3 x86− 64 Assembly

When the code is written in C/C++ many optimizations are done by the compiler when the code

is transformed into Assembly. It is difficult to influence the resulting binary because it is a mix of

what the compiler understands of the code, how it applies optimizations, what the developer un-

derstands of the compiler optimizations and the hardware and how the C/C++ code is written. It is

difficult to help the compiler and it may result in anti-optimizations because of miss-understanding

between what the developer tries to express and what the compiler understands. This motivates

the use of Assembly which let interact directly with the hardware.

The x86 − 64 specification has been proposed by AMD (AMD64) as an extension of the x86
and is also supported by many manufacturers including Intel (EM64T). It aims at extending the

x86 to 64 bits architecture with the support of long int and 8 Bytes pointers. But it also doubles

the number of general-purpose registers (16 instead of 8) and XMM/SIMD registers (16 instead

of 8) and it adds some advanced features like the passage of function parameters using registers.

The general-purpose registers manipulate types of 1, 4 or 8 Bytes according to the operand names.

For example, the mov operand should be postfixed like mov{l, q,w} to specify the size of the data

and followed by an x86 register (%rax, %rcx, %rdx, %rbx, %rsi, %rdi, %rsp, and %rbp) or a new

register (from %r8 to %r15). The registers have also a main name which can be postfixed to
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match the target data type. Intel and AMD provide great documentations [115; 116] which define

instructions set and also give some optimization advices.

Developing in Assembly appears to be a difficult task at first sight. However, in Scientific appli-

cations the 80−20 rule is usually true and 80% of the time is spent in 20% of the code. Therefore,

it is interesting to invest in order to optimize the computation intensive parts which are usually

included in small kernels. For example, most BLAS or sparse BLAS functions are written in a

few lines (<100). Moreover, these computational kernels are adapted to be directly expressed in

Assembly because

• they do not call external functions, all the code is included in the body of the function

• they do not access structures or classes or any complex memory element

• they declare only pointers and indexes

• they simply iterate linearly or by indirection with one or several loops

• they are a translation of the Cwith SIMD intrinsics without the potential extra instruction added

by the compiler

• they do not allocate any memory or I/O

• they compute floating-point operations; they load values from the memory, compute and store

back the results

• they do not need to access/modify the stack especially in x86−64 because the function param-

eters are passed by registers.

It is accessible to convert a code written in standard C into C + intrinsics but it is the same

principle to convert from C + intrinsics into Assembly. The readability of the Assembly makes it

less intuitive but the structure of the kernels and the important operands are easy to master. We

spread for a register-oriented programming with the ideas of maximizing the usage of the registers,

avoiding the usage of the stack and minimizing the number of loads. A compiler is able to create

such Assembly especially from aC+intrinsics code, but in general they delegate many optimizations

to the hardware. Moreover, this kind of development is not a general programming model and it

cannot be used for general-purpose applications. We provide an example of an Assembly kernel

in the Code C.3 to compute our UBCOO SpMV presented in Section 3.1.6.

1 e x t e r n ”C” vo id BlockSpMV_8_avx_asm ( con s t doub le * b lock s , c on s t i n t * b l o ck s I dx , c on s t s i z e _ t ...

nbBlocks ,

2 c on s t doub le * x , doub le * y ) ;
3 / * ( b l o c k s r d i , b l o c k s I d x r s i , nbB locks rdx , x rcx , y r8 ) * /

4 / * use r9 f o r b l o ck row idx , r10 f o r b l o ck c o l idx , r13 / r14 / r15 unused * /

5 __asm__ (

6 ” . g l o b a l BlockSpMV_8_avx_asm \n”

7 ”BlockSpMV_8_avx_asm : \ n”

8 ” SpS l i ceAvxAsm_gmvv_mod4_f_s ta r t loop : \ n”

9 ”PREFETCHNTA 1024(% r d i ) ; \ n”

10 ”movl 0(% r s i ) ,% r9d ; \ n” / / b l o c k s I d x [ 0 ] , row idx

11 ”movl 4(% r s i ) ,% r10d ; \ n” / / b l o c k s I d x [ 1 ] , c o l i d x

12 ” l e a (% rcx ,% r10 , 8 ) ,% r10 ; \ n” / / r10 = r cx +r10 = x + b l o c k s I d x [ 1 ] ; ...
b l o c k s I d x [ 1 ] * s i z e o f ( doub le ) , c o l i d x

13
14 ”vmovupd 0(%r8 , %r9 , 8) , %ymm0 ; \ n” / / y [ rowIdx ]
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15 ”vmovupd 32(%r8 , %r9 , 8) , %ymm1 ; \ n” / / y [ rowIdx +4]

16
17 / / F i l l a l l ymm v a l u e s w i th v b r o a d c a s t s d or v shu fpd

18 ” v b r o a d c a s t s d 0(% r10 ) , %ymm2 ; \ n” / / p t r x [ 0 ]

19 ”vmovapd (% r d i ) , %ymm3 ; \ n” / / v a l u e s [ 0 ] [ 0 ] / [ 0 ] [ 0 ]

20 ”vmovapd 32(% r d i ) , %ymm4 ; \ n” / / v a l u e s [ 1 ] [ 0 ] / [ 4 ] [ 0 ]

21 ” vfmadd231pd %ymm3 , %ymm2 , %ymm0 ; \ n” / / r e s0 += p t r x [ 0 ] * v a l u e s [ 0 ] [ 0 ]

22 ” vfmadd231pd %ymm4 , %ymm2 , %ymm1 ; \ n” / / r e s1 += p t r x [ 0 ] * v a l u e s [ 1 ] [ 0 ]

23
24 ” v b r o a d c a s t s d 8(% r10 ) , %ymm5 ; \ n” / / p t r x [ 1 ]

25 ”vmovapd 64(% r d i ) , %ymm6 ; \ n” / / v a l u e s [ 0 ] [ 1 ] / [ 0 ] [ 4 ]

26 ”vmovapd 96(% r d i ) , %ymm7 ; \ n” / / v a l u e s [ 1 ] [ 1 ] / [ 4 ] [ 4 ]

27 ” vfmadd231pd %ymm6 , %ymm5 , %ymm0 ; \ n” / / r e s0 += p t r x [ 0 ] * v a l u e s [ 0 ] [ 0 ]

28 ” vfmadd231pd %ymm7 , %ymm5 , %ymm1 ; \ n” / / r e s1 += p t r x [ 0 ] * v a l u e s [ 1 ] [ 0 ]

29
30 ” v b r o a d c a s t s d 16(% r10 ) , %ymm8 ; \ n” / / p t r x [ 2 ]

31 ”vmovapd 128(% r d i ) , %ymm9 ; \ n” / / v a l u e s [ 0 ] [ 2 ] / [ 0 ] [ 8 ]

32 ”vmovapd 160(% r d i ) , %ymm10 ; \ n” / / v a l u e s [ 1 ] [ 2 ] / [ 4 ] [ 8 ]

33 ” vfmadd231pd %ymm9 , %ymm8 , %ymm0 ; \ n” / / r e s0 += p t r x [ 0 ] * v a l u e s [ 0 ] [ 0 ]

34 ” vfmadd231pd %ymm10 , %ymm8 , %ymm1 ; \ n” / / r e s1 += p t r x [ 0 ] * v a l u e s [ 1 ] [ 0 ]

35
36 ” v b r o a d c a s t s d 24(% r10 ) , %ymm11 ; \ n” / / p t r x [ 3 ]

37 ”vmovapd 192(% r d i ) , %ymm12 ; \ n” / / v a l u e s [ 0 ] [ 3 ] / [ 0 ] [ 1 2 ]

38 ”vmovapd 224(% r d i ) , %ymm13 ; \ n” / / v a l u e s [ 1 ] [ 3 ] / [ 4 ] [ 1 2 ]

39 ” vfmadd231pd %ymm12 , %ymm11 , %ymm0 ; \ n” / / r e s0 += p t r x [ 0 ] * v a l u e s [ 0 ] [ 0 ]

40 ” vfmadd231pd %ymm13 , %ymm11 , %ymm1 ; \ n” / / r e s1 += p t r x [ 0 ] * v a l u e s [ 1 ] [ 0 ]

41
42 ” v b r o a d c a s t s d 32(% r10 ) , %ymm2 ; \ n” / / p t r x [ 4 ]

43 ”vmovapd 256(% r d i ) , %ymm3 ; \ n” / / v a l u e s [ 0 ] [ 4 ] / [ 0 ] [ 1 6 ]

44 ”vmovapd 288(% r d i ) , %ymm4 ; \ n” / / v a l u e s [ 1 ] [ 4 ] / [ 4 ] [ 1 6 ]

45 ” vfmadd231pd %ymm3 , %ymm2 , %ymm0 ; \ n” / / r e s0 += p t r x [ 0 ] * v a l u e s [ 0 ] [ 0 ]

46 ” vfmadd231pd %ymm4 , %ymm2 , %ymm1 ; \ n” / / r e s1 += p t r x [ 0 ] * v a l u e s [ 1 ] [ 0 ]

47
48 ” v b r o a d c a s t s d 40(% r10 ) , %ymm5 ; \ n” / / p t r x [ 5 ]

49 ”vmovapd 320(% r d i ) , %ymm6 ; \ n” / / v a l u e s [ 0 ] [ 5 ] / [ 0 ] [ 2 0 ]

50 ”vmovapd 352(% r d i ) , %ymm7 ; \ n” / / v a l u e s [ 1 ] [ 5 ] / [ 4 ] [ 2 0 ]

51 ” vfmadd231pd %ymm6 , %ymm5 , %ymm0 ; \ n” / / r e s0 += p t r x [ 0 ] * v a l u e s [ 0 ] [ 0 ]

52 ” vfmadd231pd %ymm7 , %ymm5 , %ymm1 ; \ n” / / r e s1 += p t r x [ 0 ] * v a l u e s [ 1 ] [ 0 ]

53
54 ” v b r o a d c a s t s d 48(% r10 ) , %ymm8 ; \ n” / / p t r x [ 6 ]

55 ”vmovapd 384(% r d i ) , %ymm9 ; \ n” / / v a l u e s [ 0 ] [ 6 ] / [ 0 ] [ 2 4 ]

56 ”vmovapd 416(% r d i ) , %ymm10 ; \ n” / / v a l u e s [ 1 ] [ 6 ] / [ 4 ] [ 2 4 ]

57 ” vfmadd231pd %ymm9 , %ymm8 , %ymm0 ; \ n” / / r e s0 += p t r x [ 0 ] * v a l u e s [ 0 ] [ 0 ]

58 ” vfmadd231pd %ymm10 , %ymm8 , %ymm1 ; \ n” / / r e s1 += p t r x [ 0 ] * v a l u e s [ 1 ] [ 0 ]

59
60 ” v b r o a d c a s t s d 56(% r10 ) , %ymm11 ; \ n” / / p t r x [ 7 ]

61 ”vmovapd 448(% r d i ) , %ymm12 ; \ n” / / v a l u e s [ 0 ] [ 7 ] / [ 0 ] [ 2 8 ]

62 ”vmovapd 480(% r d i ) , %ymm13 ; \ n” / / v a l u e s [ 1 ] [ 7 ] / [ 4 ] [ 2 8 ]

63 ” vfmadd231pd %ymm12 , %ymm11 , %ymm0 ; \ n” / / r e s0 += p t r x [ 0 ] * v a l u e s [ 0 ] [ 0 ]

64 ” vfmadd231pd %ymm13 , %ymm11 , %ymm1 ; \ n” / / r e s1 += p t r x [ 0 ] * v a l u e s [ 1 ] [ 0 ]

65
66 ”vmovupd %ymm0 , 0(%r8 , %r9 , 8) ; \ n” / / y [ rowIdx ]

67 ”vmovupd %ymm1 , 32(%r8 , %r9 , 8) ; \ n” / / y [ rowIdx ]

68
69 ” addq $512 , %r d i ; \ n” / / b l o c k s += 8*8 ( * 8 )

70 ” addq $8 , %r s i ; \ n” / / b l o c k s I d x += 2 ( * 4 )

71
72 ” subq $1 , %rdx ; \ n” / / nbB locks −= 1

73 ” j n z SpS l i ceAvxAsm_gmvv_mod4_f_s ta r t loop ; \ n” / / i f nbCols != 0 go to b e g i nn i n g

74
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75 ”NOP; \ n” / / To avo id t he p r e s enc e o f r e t j u s t a f t e r t h e j n z
76
77 ”BlockSpMV_8_avx_asm_out : \ n”

78 ” r e t ; \ n”

79 ) ;
80

Code C.3: SpMV of block size 8× 8 in Assembly x86-64

C.4 NVidia GPUs and CUDA Programming

The graphical processing units (GPUs) have been improved drastically for 20 years principally

pushed by the video-game industry. The usage of the GPUs to perform scientific computing was

more a hack before NVidia introduced its CUDA programming model [9]. It has been the real

beginning of the general-purpose computation on graphical processing units (GPGPU). The GPUs

are classified in the family of the co-processors which includes processing units that are responsible

for a specific task but cannot work without the CPU; the CPU is said to be the host and the GPU the

device. The CPU is in charge of the allocations and copies to the device but also to the calls to the

GPU kernel functions (functions that are executed on the device). However, the GPUs capabilities

continue to be improved and the latest CUDA release offers new possibilities like dynamic/nested

parallelism. The GPU hardware specificities and the runtime parameters are critical to drive the

development of efficient kernels.

A GPU is composed by several processors and each of them computes several thread-blocks. A

processor could be described as an SIMD/vector unit because it can perform a single instruction

onmultiple data but in reality, the term SIMT (Single-Instruction, Multiple-Thread) is used to avoid

the confusion with CPU SIMD. The width of the SIMT stream is called the warp and is equal to

32 on most GPUs. A processor creates, manages, schedules, and executes threads in a team of

32 parallel threads called warps. The memory system is composed by a global/main memory, a

shared memory, a local memory and the registers.

The CUDA programming model has nicely hidden the complexity of the GPUs by providing

a multi-thread oriented programming even though the execution is closer to an SIMD. This ab-

straction is ambiguous at first sight and leads to poor performance if a kernel is developed like

for a multi-thread CPU. In CUDA, we create a multi-dimensional grid of thread-blocks where each

thread-blocks is a multi-dimensional thread-team. The model is mapped above the GPU hardware

and the thread-blocks are distributed among the processors and the threads are executed by team

of warp. The threads that composed a warp start together at the same program address, but they

have their own instruction address counter and register state and are therefore free to branch and

execute independently. Therefore, even so the term thread is used, this has nothing to do with a

CPU/OS thread but it allows to represent the different units of the SIMT processors. If the threads

inside a warp do not execute the same instruction, each different instruction is done separately and

one aer the other.

On the CPU, the memory control is very limited but on the GPU a part of the memory manage-
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ment must be done by the programmer. Each memory level has its own specificities in terms of

visibility and access. The global memory is visible by all the threads, the shared memory is visible

by the workers of a thread-block and the local memory and the registers are visible by one thread.

The access to the global memory is performed transparently with a pointer data type but it relies

on a complex mechanism. The accesses should be coalesced/aligned because in a simplified model

we consider that each 128 Bytes word is read separately. The shared memory is faster but very

limited and belongs to a thread-block, the access to the shared memory should be strided because

the addresses are mapped to different banks and several accesses to the same bank to different

memory addresses are done consecutively. The data of a thread are stored into registers and if it is

not enough into the local memory. The registers are extremely fast and should be privileged such

that a kernel does not need to use the local memory.

The size of the different memories is also crucial in the development of the kernels. The main

GPUs limitations are their number of processors, the maximum size of the grid, the maximum size

of the thread-blocks, the size of the shared memory, the maximum number of registers per thread-

blocks/threads. Moreover, to achieve high performance the processors must be occupied which

involves having a large number of threads because the instructions are pipelined at the instruction-

level parallelism within a single thread, but also at a thread-level parallelism. In Code C.4, we

provide the source code of our kernel for the slice computation presented in Section 3.4.3 where

we try to take into account all the specificities of the GPU to get an efficient implementation.

1 t emp l a t e < c l a s s Va lueC l a s s , c on s t i n t nbMergedSteps ,

2 c on s t i n t matr ixBlockDimWidth , c on s t i n t maxNbNnzMat>

3
4 __dev i c e__ vo i d cuda_compute_a_rowgroup (

5 c on s t i n t l e ad i ngRe s , c on s t i n t nbRows ,

6 c on s t i n t * s t a r t i n gPo i n t P e rRow , c on s t i n t nbThreadsInGroup ,

7 c on s t Va l u eC l a s s * v a l u e s , c on s t Va l u eC l a s s * pa s tVa l u e s ,

8 Va l u eC l a s s * r e s u l t s , c on s t i n t nbNnzMat ) {

9
10 / / Copy o f t h e p a s t v a l u e s r e l a t e d to the c u r r e n t s l i c e
11 __shared__ Va l u eC l a s s s h a r e dP a s t [ maxNbNnzMat + nbMergedSteps ] ;

12
13 f o r ( i n t i d x = t h r e a d I d x . x ; i d x < ( nbNnzMat+nbMergedSteps ) ; i d x += blockDim . x ) {

14 s h a r e dP a s t [ i d x ] = p a s tV a l u e s [ i d x ] ;

15 }

16 __ s y n c t h r e a d s ( ) ;
17
18 / / Computat ion o f t h e Cont iguous Block
19 v a l u e s += t h r e a d I d x . x ;

20 f o r ( i n t idxRow = t h r e a d I d x . x ; idxRow < nbRows ; idxRow += blockDim . x ) {

21 c on s t Va l u eC l a s s * p t r P a s t = &sh a r e dP a s t [ s t a r t i n g Po i n t P e rRow [ idxRow ] ] ;

22 Va l u eC l a s s sum [ nbMergedSteps ] ;

23
24 {

25 c on s t i n t i d xCo l = 0 ;

26 c on s t Va l u eC l a s s c o lVa l u e = v a l u e s [ i d xCo l ] ;

27 #pragma u n r o l l

28 f o r ( i n t i dxRes = 0 ; idxRes < nbMergedSteps ; ++ idxRes ) {

29 sum [ idxRes ] = p t r P a s t [ i d xCo l + idxRes ] * c o lVa l u e ;

30 }

31 }
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32 #pragma u n r o l l

33 f o r ( i n t i d xCo l = 1 ; i d xCo l < matr ixBlockDimWidth ; ++ i dxCo l ) {

34 c on s t Va l u eC l a s s c o lVa l u e = v a l u e s [ i d xCo l * nbRows ] ;

35 #pragma u n r o l l

36 f o r ( i n t i dxRes = 0 ; idxRes < nbMergedSteps ; ++ idxRes ) {

37 sum [ idxRes ] += p t r P a s t [ i d xCo l + idxRes ] * c o lVa l u e ;

38 }

39 }

40
41 Va l u eC l a s s * p t rRe s = &r e s u l t s [ idxRow ] ;

42 p t rRe s [ 0 ] += sum [ 0 ] ;

43 #pragma u n r o l l

44 f o r ( i n t i dxRes = 1 ; idxRes < nbMergedSteps ; ++ idxRes ) {

45 p t rRe s [ i dxRes * l e a d i n gRe s ] += sum [ idxRes ] ;

46 }

47
48 v a l u e s += blockDim . x ;

49 }

50
51 / / B a r r i e r t o ensure t h a t no t h r e ad goes t o the nex t s l i c e
52 __ s y n c t h r e a d s ( ) ;
53 }

54

Code C.4: Contiguous-Blocking CUDA source code
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D.1 Hilbert Indexing

The conversion of the box/grid-coordinate into Hilbert index is not trivial, and a nice algorithm

has been proposed in [117]. We give the method in Algorithm 17, where the rotations and the

inversions are done in a single switch statement.

D.2 Morton Indexing

Figure D.1 shows how the bits of the grid-coordinate are interleaved to give a Morton index. The

example is for 3D coordinate but the same principle applies to any dimension.

x = xB−1xB−2...x1x0 ; y = yB−1yB−2...y1y0 ; z = zB−1zB−2...z1z0
mindex = xB−1yB−1zB−1.xB−2yB−2zB−2....x1y1z1.x0y0z0

Figure D.1:Morton Index example in 3D

Therefore, the conversion is done by performing one interleaving per level as shown in Algo-

rithm 18. The complexity of this algorithm is O(l) with l the level of the target cell.
The Algorithm 19 reverses the conversion and return a grid-coordinate from a Morton index.

The complexity of this algorithm is O(l) with l the level of the target cell.
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Algorithm 17: Grid-Coordinate to Hilbert index
Data: Cm the position of the cell, l the level of the cell
function GetHilbertIndex(Cm, l) : hindex

for idxl = l-1 to 0 do
// Get the bit at position idxl from integer x
xi = bits_get_bit(x, idxl);
yi = bits_get_bit(y, idxl);
zi = bits_get_bit(z, idxl);
index = bits_le_shi(xi,2) OR bits_le_shi(yi,1) OR zi;
switch index do

case 000B
swap(y, z);
break;

end
case 001B or 101B

swap(x, y);
break;

end
case 100B

bits_inverse(x);
bits_inverse(z);
break;

end
case 110B

bits_inverse(x);
bits_inverse(z);
break;

end
case 111B or 011B

swap(bits_inverse(x), bits_inverse(y));
break;

end
otherwise

// index is 010B
swap(bits_inverse(y), bits_inverse(z));

end
endsw
hindex = bits_le_shi(hindex,3) + transform[index];

end
return hindex;

D.2.1 Interaction List Computation

In the FMM far-field, we have to find the neighbors of the leaves (P2P) and the cell interaction lists
(M2L). We recall that the interaction list for a given cell c at level l is composed by the children of the

neighbors of c’s parent who are not direct neighbors/adjacent to c. A straightforward algorithm

to get an interaction list is to follow the definition. From the Morton index mc of a cell c, we
obtain c’s parent index with a bit shi mp = bits_shift_right(mc, 3). To find the neighbors of c’s
parent p, we convert mp in grid-coordinate (xp, yp, zp) using the Algorithm 19. The grid-coordinate

of p’s neighbors are in the intervals (xp ± 1, yp ± 1, zp ± 1). For each neighbor g, we generate

its Morton index mg using Algorithm 18 and obtain its children indexes with a bit shi. We test

the children indexes to ensure that no direct neighbors of c are added to the list. Two cells are
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Algorithm 18: Grid-Coordinate to Morton index
Data: Cm the position of the cell, l the level of the cell
function GetMortonIndex(Cm, l) : mindex

mindex = 0;
mask = 1;
// The order is xyz.xyz....
Cm[0] = bits_shi_le(2, Cm[0]);
Cm[1] = bits_shi_le(1, Cm[1]);
// Cm[2] is unchanged
for indexLevel = 0→ l do

mindex = mindex OR (Cm[2] AND mask);
mask = bits_shi_le(mask, 1);
mindex = mindex OR (Cm[1] AND mask);
mask = bits_shi_le(mask, 1);
mindex = mindex OR (Cm[0] AND mask);
mask = bits_shi_le(mask, 1);
Cm[2] = bits_shi_le(Cm[2], 2);
Cm[1] = bits_shi_le(Cm[1], 2);
Cm[0] = bits_shi_le(Cm[0], 2);

end
return mindex;

Algorithm 19:Morton index to grid-coordinate
Data: mindex the Morton index of the cell, l the level of the cell
function GetTreeCoordinate(mindex, l) : Cm

mask = 1;
Cm[:] = 0;
// For all levels from root to the cell level
for indexLevel = 0→ l do

// z position
Cm[2] = Cm[2] OR (mask AND mindex);
mindex = bits_shi_right(m, 1);
// y position
Cm[1] = Cm[1] OR (mask AND mindex);
mindex = bits_shi_right(m, 1);
// x position
Cm[0] = Cm[0] OR (mask AND mindex);
mask = bits_shi_le(mask, 1);

end
return Cm ;

not direct neighbors if they are separated by more than one cell in at least one direction. The

drawback of this method is the conversion from Morton index to grid-coordinate and then again

from grid-coordinate into Morton index.

An alternative is to stay in the Morton index side and to work with binary operations. For

example, we test the if two cells are neighbors using their Morton indexes with the Algorithm 20.

The complexity of this test is the working dimension and thus is it constant in our case. The idea is

to look if there is one bit difference between two indexes. If we are in a 1D problem, two indexes

A and B (with A > B) are neighbors if there are equals, if only the lower bit is different or if

A = B + 1. However, in higher dimensions, the bits are interleaved such that we cannot use the

basic arithmetic operations (+/−/×/÷). Therefore, to test A = B+ 1 we use binary operations:

174



first we find the last non-zero bit position in a p, then A and B should be equal for all the bits above

p and B should be one for the bits before p.

Algorithm 20: Test to know if two Morton indexes are neighbors
Data: mindexA the first index, mindexB the second index
function AreNeighbors(mindexA, mindexB) : true if indexes are neighbors

mask_x = 100.100...100.100 bits;
mask_y = 010.010...010.010 bits;
mask_z = 001.001...001.001 bits;
flags[3] = mask_x, mask_y, mask_z ;
for idxDim = 0→ 3 do

vA = (mindexA AND flags[idx]);
vB = (mindexB AND flags[idx]);
// Test if equal or if only the last bit is different
if (vA == vB) or ((vA XOR vB) == 1) then

// Are neighbor...
else

// bsf instruction
firstBit = first_nnz_bit(Max(vA, vB));
highMask = bits_shi_le(bits_shi_right(NOT(0), firstBit+1) , firstBit+1) AND flags[idx];
if (vA AND highMask) ̸= (vB AND highMask) then

return false;
end
lowMask = (NOT bits_shi_le((NOT(0)) , firstBit)) AND flags[idx];
if (Min(vA,vB) AND lowMask) ̸= lowMask then

return false;
end
// Are neighbor...

end
end
return true;

The Algorithm 21 returns what we call the directive indexes which are composed of 3 Morton

indexes; the first index is the Morton coordinate of the cells at the relative position (−1,−1,−1),
the second index is equal to the testedMorton indexm and the last index is theMorton index of the

of the cells at the relative position (+1,+1,+1). From these relative indexes we can generate the

direct neighbors ofm (the cells±1 in each direction) with Algorithm 22. Using these algorithms, we

are able to get the Morton index of the neighbors of a cell without generating the grid-coordinates.

D.3 Quicksort in Distributed Memory

The distribution of the data before the construction of the octree is a critical stage to ensure a scal-

able FMM. The distributed Quicksort, taken from [118], is a great algorithm to sort the particles

over a large number of MPI processes. Despite its ambiguous name, the distributed Quicksort is

not composed by local Quicksort and the data are not locally sorted. The algorithm is similar to a

local Quicksort but it stops once there are enough recursions to ensure one partition per process

as presented in Algorithm 23. As the usual Quicksort, the choice of the pivot is crucial to ensure

performance but also to guarantee that all the data will not finally be hosted by a single node.

The choice of the pivot is done globally and is used by all the processes from a group to partition
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Algorithm 21: Morton index to directive indexes
Data: mindex the Morton index of the cell
function GetDirectiveIndexes(mindex) : directiveIndexes[3]

mask_x = 100.100...100.100 bits;
mask_y = 010.010...010.010 bits;
mask_z = 001.001...001.001 bits;
// The center index is equal to mindex
directiveIndexes[1] = mindex;
// Compute the negative index
mindex_minus = mindex;
flag_minus = 0;
if (((mindex AND mask_x) XOR mask_x) ̸= mask_x then

flag_minus = flag_minus OR 4;
end
if (((mindex AND mask_y) XOR mask_y) ̸= mask_y then

flag_minus = flag_minus OR 2;
end
if (((mindex AND mask_z) XOR mask_z) ̸= mask_z then

flag_minus = flag_minus OR 1;
end
while flag_minus is not 0 do

prevflag_minus = flag_minus ;
flag_minus = bits_shi_le(flag_minus AND NOT(mindex_minus), 3) ;
mindex_minus = (mindex_minus XOR prevflag_minus) ;

end
directiveIndexes[0] = mindex_minus;
// Compute the positive index
mindex_plus = mindex; flag_plus = 0;
if (mindex AND limiteX) == limiteX then

flag_plus = flag_plus OR 4;
end
if (mindex AND limiteY) == limiteY then

flag_plus = flag_plus OR 2;
end
if (mindex AND limiteZ) == limiteZ then

flag_plus = flag_plus OR 1;
end
while flag_plus ̸= 0 do

prevflag_plus = flag_plus;
flag_plus = bits_shi_le(flag_plus AND mindex_plus , 3);
mindex_plus = mindex_plus XOR prevflag_plus;

end
directiveIndexes[2] = mindex_plus;

Algorithm 22: Morton index of the neighbor of m from the directive indexes
Data: directiveIndexes[3] the result of GetDirectiveIndexes
directions[3] +1/− 1 in each dimension
function GetNeighborIndex(directiveIndexes[3], directions[3]) : neighborIndex

mask_x = 100.100...100.100 bits;
mask_y = 010.010...010.010 bits;
mask_z = 001.001...001.001 bits;
return directiveIndexes[directions[0]+1] AND mask_x
OR directiveIndexes[directions[1]+1] AND mask_y
OR directiveIndexes[directions[2]+1] AND mask_z;
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their data. Then, the first half of the processes will handle the lowest values whereas the other

half will manage the greater values. Aer a communication stage which makes the processes

exchanging their lower or upper partition, the process group is divided appropriately to repeat the

operation. Once a process is alone in its group it sorts the data locally with any sorting algorithm.

To have an optimized implementation, the division of the group should be done proportionally

to the number of elements lower/greater than the pivot. The choice of the pivot must include the

cases where some processes do not have values or all processes have the same values.

Algorithm 23: Distributed Quicksort
Data: values an array of values to sort, N the size of the array
mpi_group the group of process that hold data.
Output: sorted values not lower than the values hosted by lower rank processes and not greater than the values
hosted by higher rank processes.
function DistributedQS(values, N, mpi_group) : values

while number of process in mpi_group ̸= 1 do
pivot = SelectPivot(values, mpi_group);
[values, part] = Partition(values, pivot);
totalLowerPart[mpi_group.size] = ReduceSum(mpi_group, part);
totalGreaterPart[mpi_group.size] = ReduceSum(mpi_group, N-part);
if current process belong to lower part then

destRank = SelectProcess(mpi_group, totalLowerPart, totalGreaterPart);
Send(destRank, values[part:end]);
values = [ values[0:part] : Recv(mpi_group)];
mpi_group = ReduceGroup(mpi_group);

else
destRank = SelectProcess(mpi_group, totalLowerPart, totalGreaterPart);
Send(destRank, values[part:end]);
values = [ values[0:part] : Recv(mpi_group)];
mpi_group = ReduceGroup(mpi_group);

end
end
local_sort(values);
return values;

D.4 Generic Periodicity Algorithm for the FMM

Several physical problems require periodic boundary conditions and numerous specific methods

have been developed to simulate the repetition of the simulation box. An illustration of the period-

icity is shown by Figure D.2. In this section, we present an algorithm which uses the usual FMM

operators to generate the periodicity and which has the same accuracy as the unerlying FMM ker-

nel. The extra number of FMM operations to perform is low and it generates a large number of

repetitions of the simulation box in one or several directions/dimensions. In a classic FMM, the

far-field stops at level 2 (at level 1 there are 8 neighbor cells and thus no possible M2L) whereas
the key idea of our approach is to continue the FMM above the level 2.
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Figure D.2: Repetition of the simulation box in 2D in all directions

D.4.1 Periodicity up to the Level 2

The periodic boundary condition is applied by the P2P and the M2L operators by simulating a

periodicity when we generate the neighbor/interaction lists. At level l there are g = 2l cells in each

dimension, and if we ask for a cell outside the grid we round to find the corresponding cell inside

the grid if it exists; if the index is < 0 we add g and if if is >= g we reduce by g. This step repeats

the simulation box by half in all the directions.

Periodicity : M2L at 
level 2

Periodicity : P2P and 
M2L under level 2

Figure D.3: Repetition of the simulation box until level 2. The box is repeated 0.5 time in each dimension. The dense blue
cell of level 2 covers the dark green cells.

D.4.2 Periodicity up to the Level 1

The same principle can be applied by continuing the FMM up to the level 1 even if the usual FMM

stops at level 2. In this case, it simulates a repetition of one box in each dimension. The order of

the operations is standard to the FMM, the upward pass should go up to the level 1 and the L2L
1 → 2 should be done aer the M2L at level 1. The interaction list of a cell c at level 1 includes
c itself and has duplicate elements but this should not be a problem because it simply means that

the same data distribution exists like if the elements were replicated.

D.4.3 Periodicity up to the root (level 0)

We apply the FMM up to the root level. The root cell does not have any parent and therefore it

does not have any child position which is used to compute the interaction list of the M2L. The

classic interaction list includes the cells in the relative interval −3/2 or −2/3 depending on the

position of the target relatively to its parent. In order to have a large repetition while we still use
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the usual M2L we decide that the interaction list of the root includes the cells from the interval

−3/3. The interactions list of the root is composed by itself and is made of 316 elements instead of

189 in the usual M2L. This repetition is shown in Figure D.4 and we see that the real simulation

box is repeated 3 times in each direction.

½ Box repeated with the
P2P and the M2L up to level 2

1 Box repeated using
M2L up to level 1

3 Boxes repeated using
M2L until level 0

Real simulation box

Figure D.4: Repetition of the simulation box until level 0. The box is repeated 3 times in each dimensions and each direc-
tions.

D.4.4 Periodicity Above the Root (Above the Level 0)

The periodic FMM algorithm continues above our real octree to have larger repetitions. It is

straightforward to create the cell above the root by simply considering that our simulation box is

repeated. The cell of level −1 (one level above the root) is obtained by a single M2M where the

8 children are all the root cell. The idea is valid until any level by simply considering that the 8
children are equal to the lower-level cell. However, some important choices should be made to

perform the M2L and to choose where our real octree is located in the virtual larger octree.

Our objective is to put our real octree in the center of the virtual grid generated by going above

the root and thus we try to have almost the same number of repetitions in all the directions. More-

over, to ensure a correct coherency and to avoid some duplicate the M2L at level 0 should not be

done in −3/3 if we continue the algorithm above the root. First, we consider that the real root is

the last child relatively to its parent (+1,+1,+1). For all the upper levels, we consider that the

parents of the real root are the first child of their respective parent (0, 0, 0). Therefore, the M2L
at level 0 is done on the interval −3/2, and for the upper levels in the interval −2/3. By doing so,
we still used the usual FMM operators and we repeat the original simulation box in all directions

as shown in Figure D.5 but there is a difference of 1 in each dimension. This single difference

becomes negligible as the repetitions get larger.

This strategy is applied without any limit apart the numerical stability of the underlying kernel.

When the periodicity algorithm is applied up to the −l levels above the root we generate a grid

of 6× 2|l| times the original box; each M2M above the root doubles the grid dimension such that

−l levels above the root a cell represents 2|l| times the original box. Moreover, at the last level

the M2L is done from −2 to 3 and covers 6 cells. In 3D, the total repetition of the box in the

simulation is B = (6 × 2|l|)3, and we have for l = 1 B = 1728, for l = 5 B = 7, 077, 888 and
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Figure D.5: Repetition of the simulation box until level -1. The box is repeated−5 and+6 times in all dimensions.

for l = 10 B = 231 · 109. Regarding the number of operations, for each level above the root we

compute oneM2M with 8 children (a completeM2M), a completeM2L with 189 interactions and

one L2L with a single child. To prepare a normal FMM kernel for a periodic computation, we

have to specify that we compute a FMMwith a tree of height h+ |l|+2 and that the simulation box

is of width w ∗ 2|l|+2, with w the original width. Therefore, we choose the l parameters depending

on the number of repetitions we want to guarantee enough periodicity.

D.5 Heteroprio Scheduler

During our researches on the runtime based FMM, we developed a scheduler to manage the het-

erogeneous architectures. This scheduler called Heteroprio allow to assign one priority per pro-

cessing unit type to each task. We present here the Heteroprio implementation using some StarPU

terminology. A schematic view of the scheduler is presented in Figure D.6.
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              GPU Priority
             

Figure D.6: Heteroprio scheduler.

The implementation of Heteroprio is straightforward if the priorities are static n-tuple with n
the number of processing unit types. We create one bucket per n-tuple and we define which kind

of processing unit is authorized to pick a task from this bucket. Then, for each type of processing

unit we create an indirection access to the different buckets from the lower to higher priorities.

As an example, if we have four buckets: B0 : {CPU,GPU}, B1 : {CPU,GPU,OPENCL},
B2 : {CPU,GPU} and B3 : {CPU}. At least one processing unit type must point to each bucket

otherwise the tasks inserted into a bucket will not be computed. But it is not necessary for all
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the architectures enabled in a bucket to point on it. We can have the following priorities; CPU :

{B0,B1,B3}, GPU : {B2,B0} and OPENCL : {B1}. A priority list defines where a worker will

look and in which order, such that in our example for a CPU the tasks in B0 are more prioritized

than the tasks in B1. Of course, it is also possible to add a prefetch system but doing so reduces

the visibility of the priorities.

Heteroprio also includes a management of the critical state. For each of the above buckets,

the user is able to specify which type is the fastest processing unit. Then, for each other type of

processing unit which can access this bucket, the user specifies its slow − factor which tells how

slow are the other types against the fastest one. Then, Heteroprio gives a task to a worker only

if it does not result in a possible time extension. As an example, if we have a bucket with two

processing unit enabled b : P0,P1. If P0 is the faster type and we have a slow factor P1/PO = F1.

Then Heteroprio gives a task from b to a worker of type P0 only if there are more than F1 × N0

tasks, where N0 is the number of worker of type P0. For example, if P1/PO = 3 and N0 = 2, a
worker of type P1 gets a task from b if there are more than 6 tasks. It might not give the optimal

execution, but if the tasks in b are the last ones, it reduce the wrong choice possibilities by giving
a task to a slow worker which finally extend the wall duration.
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In this Appendix, we discuss different paradigms and methods related to soware engineering

and HPC.

E.1 C++ Language

The different libraries developed during this thesis have been done in C++. The C++ is an object-

oriented programming language created in the 1980 decade by Bjarne Stroustrup. Since its birth,

the C++ has been upgraded by several standards with the most recent in 2014. Nowadays, it is

still in the tops 10 of the most-used languages and it is the main language for many large projects.

Some illustrative examples are Gcc, LLVM, Adobe products, several server applications (Ama-

zon, Amadeus, Facebook, Google, ...), several Microso sowares and some parts of operating

systems (Apple, Microso). In the HPC community, the C or the Fortran are widely used for his-

torical reasons but the C++ seems more and more popular. The Fortran is convenient to write

linear accesses and multi-dimensional matrices which is appreciated by the applied-mathematics

community especially in linear algebra. The power of the object-oriented paradigm may result in a

dramatic design but, if used appropriately, it is a clear asset for maintainability and large projects’

life-cycle. Moreover, the C++ keeps some compatibilities with the C and it is possible to link C++,

C and Fortran binaries. Therefore, it is possible to develop or to use old kernels in C/Fortran inside
a C++ project. In addition, C++ is a compiled language which is a required property in HPC.
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E.1.1 C++ Template and Header Template Library (HTL)

Among the various functionalities and features of the C++, the templates are a great help to write

optimized code while keeping some genericity as discussed in Appendix E.2. The templates are

categorized in three parts: the function templates, the class templates and the variable templates.

The function/class/type which is used in place of the template is known at compile-time which

opens the possibilities for several optimizations by the compiler; the compiler is able to apply

specific and low level optimizations because it knows what it works with. For example, knowing

a function at compile allows to inline the target function and potentially to avoid aliasing. While

the C++ virtual methods help for a good design, they may results in the use of function pointers

evaluated at runtime.

The resulting libraries of our study are based on the coding pattern Header Template Library

which itself is composed by the all-in-header pattern and then pure-template pattern. All the C++

classes are developed inside their header files and majority of them are template classes. While it

is not usual and maybe not appropriate for huge projects, it has some nice assets. On the other

hand, the main drawback of the HTL pattern is the compilation time because no intermediate

object files are generated and when an executable is compiled all the included headers are re-

compiled. However, in HPC we concentrate on the execution time and we agree to pay an extra-

cost during the compilation stage if it is beneficial for the execution. Building a library with the

Header Template Library pushes the compiler to perform function inlining and to know what the

called functions do. We can pre-compile specialized template classes to accelerate the compilation

(especially for template classes which are widely used). We can still use virtual functions at high

level to create an appropriate design but the HTL pattern removes the virtual functions and the use

of interfaces which improves the performance at low level in a computational loop for example.

The HTL pattern limits the circular dependencies and uses compiled time polymorphism which

helps to have amaintainable design. However, some expressions are difficult to express in template

especially if it generates in a variable number of variables. The straightforward method is to use an

array to correlate a template parameter but it might not result in the same binary as if we write the

function with different variables. For example, the declaration of int A[S];, with S a template might

not give the same binary as int a, b; even if S = 2; In addition, the source of the HTL libraries

is distributed with the library header and if one wants to hide the source code, he must use an

interface and provide only pre-compiled parts of the template classes.

E.2 Genericity vs. Optimization

During the development of an HPC application, the question of keeping an algorithm generic

or applying optimizations is asked numerous times. HPC is about optimization and reducing the

execution time but the design should not be neglected in a long-term project. Soware engineering

is about design, maintainability, modularity and re-usability where the genericity occupies a special

place. Therefore, they appear opposed and while an algorithm is more and more optimized for

a given input or a given hardware it looses its genericity. The question must be asked whether if
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we agree to lose this genericity to have a potential gain in performance. Of course, it is always

possible to maintain different versions of an algorithm with distinct degrees of optimizations but

this is acceptable only for extremely mature kernels which will not be updated in the near future.

The C++ templates reduce the gap and allow to have generic algorithm and potentially a high

degree of optimizations. In our libraries, some kernels are completely generic and are templatized
with scalar or SIMD data type in double or single precision. But some optimizations are up-to

the compilers and there exist some special cases where writing the optimized code is better than

a generic template-optimized code.

The genericity of an application is also tied to the hardware; developing a kernel for a special type

of processing unit or even tuning an application for a given machine. This is not a viable position,

and any application should be easily upgraded to a new hardware. For example, we cannot be

enthusiastic about an application which works only with a given number of processors or which

needs to be rewritten if we have more than x GPUs. That is why it is preferable to develop on top

of a runtime system to delegate a part of the hardware management. Runtime systems specialized

for heterogeneous architectures (as StarPU) help a lot to have an abstraction of the hardware

and to define the core algorithm of an application independently from the hardware. The initial

development cost is expensive, but the gain in maintainability and modularity is huge.

E.3 OpenCL Meta-Programming

OpenCL is a framework dedicated to the execution of applications across heterogeneous archi-

tectures. It includes a language standard (based on the C99) to write programs which can be

compiled for different devices which propose the appropriate driver. It is common to compile the

OpenCL code at runtime by asking the driver of the target device to transform the source code

into an executable binary. In the research, OpenCL is not as used as CUDA and if we look at the

number of results for the queries OpenCL and CUDA we get 33 and 86 items in Elsevier Parallel

Computing journal, and 19, 500 and 80, 300 results in Google Scholar. The fact that CUDA is

a compiled language and match the NVidia GPU specificities makes it more appropriate to per-

form advanced optimizations. While the main objective of OpenCL is portability, the performance

of a kernel are not portable. However, compilation at runtime offers impressive capabilities, be-

cause we can transform the source during the execution and compiled a new binary. Therefore, it

gives the possibility for our programs to generate new programs which is related to the concept of

meta-programming but also tuning at runtime.

Using the compilation at runtime, we are able to do what is supported by the C++ template

but also much more advanced code generation. As an example, the Code E.1 compute a SpMV

with a row blocking pattern. This function works for the double data type and any length of block

(block_size). If we want the same function of any other data type, we must duplicate the code. In

addition, several optimization cannot be done because the length of the block is evaluate at runtime

when the code is executed on the device.

1 __ke rne l vo i d spmv_c ( _ _ g l o b a l c on s t double * _ _ r e s t r i c t ma t r i x _ v a l u e s ,

2 _ _ g l o b a l c on s t i n t * _ _ r e s t r i c t ma t r i x _ i ,
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3 _ _ g l o b a l c on s t i n t * _ _ r e s t r i c t ma t r i x _ j ,

4 c on s t i n t matr ix_n ,

5 c on s t i n t b l o c k _ s i z e ,

6 _ _ g l o b a l c on s t double * _ _ r e s t r i c t vec_a ,

7 _ _ g l o b a l double * _ _ r e s t r i c t vec_b ) {

8 i n t i dxVa lue , i d xB l o ck ;

9 f o r ( i d xVa l ue = 0 ; i d xVa l ue < ma t r i x_n ; ++ i dxVa l ue ) {

10 double sum = 0 ;

11 _ _ g l o b a l c on s t double * p t rV a l u e s = &ma t r i x _ v a l u e s [ i d xVa l ue ] ;

12 _ _ g l o b a l c on s t double * ptrA = &vec_a [ m a t r i x _ j [ i d xVa l ue ] ] ;

13 f o r ( i d xB l o ck = 0 ; i d xB l o c k < b l o c k _ s i z e ; ++ i d xB l o c k ) {

14 sum += ptrA [ i d xB l o ck ] * p t rV a l u e s [ i d xB l o c k ] ;

15 }

16 vec_b [ ma t r i x _ i [ i d xVa l ue ] ] += sum ;

17 }

18 }

19

Code E.1: SpMVwith row blocking in OpenCL

In Code E.2 we give the same function but with the use of meta-programming. At runtime,

the file is loaded but before to compiled it we must replace the keywords @TYPE and @SIZE by

appropriate values. For example, if we find during an analysis that the single floating point values

are enough accurate and that a block length of 7matchs perfectly our problem, we replace the text

and create a function spmv_float_7. Executions of this SpMV example on an Intel i7−4610M CPU

at 3.00GHz show that the meta-code (E.2) is 2 times faster than the classic code (E.1).
1 __ke rne l vo i d spmv_@TYPE_@SIZE ( _ _ g l o b a l c on s t @TYPE* _ _ r e s t r i c t ma t r i x _ v a l u e s ,

2 __ g l o b a l c on s t i n t * _ _ r e s t r i c t ma t r i x _ i ,

3 __ g l o b a l c on s t i n t * _ _ r e s t r i c t ma t r i x _ j ,

4 c on s t i n t matr ix_n ,

5 __ g l o b a l c on s t @TYPE* _ _ r e s t r i c t vec_a ,

6 __ g l o b a l @TYPE* _ _ r e s t r i c t vec_b ) {

7 i n t i dxVa lue , i d xB l o ck ;

8 f o r ( i d xVa l ue = 0 ; i d xVa l ue < ma t r i x_n ; ++ i dxVa l ue ) {

9 @TYPE sum = 0 ;

10 _ _ g l o b a l c on s t @TYPE* p t rV a l u e s = &ma t r i x _ v a l u e s [ i d xVa l ue ] ;

11 _ _ g l o b a l c on s t @TYPE* ptrA = &vec_a [ m a t r i x _ j [ i d xVa l ue ] ] ;

12 f o r ( i d xB l o ck = 0 ; i d xB l o c k < @SIZE ; ++ i d xB l o c k ) {

13 sum += ptrA [ i d xB l o ck ] * p t rV a l u e s [ i d xB l o c k ] ;

14 }

15 vec_b [ ma t r i x _ i [ i d xVa l ue ] ] += sum ;

16 }

17 }

18

Code E.2: Meta-SpMVwith row blocking in OpenCL

We can replace or remove large portions of the code to take into account the target device

specificities but also to give more information to the compiler and to create a kernel which is

well suited for our problem. Using C++ template to do the same thing requires to compile all the

possibilities which is expensive and increases the size of the final binary. Among the high level

optimizations, we can decide to use a shared memory buffer if the target hardware does not have

caches or we can parametrize the size of some arrays based on the hardware cache sizes. At a

lower level, we can set values to help the compiler, unroll loop (which include duplicate source
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line and unroll by-hand), avoid indirections if we have a repeated pattern or evaluate expressions.

Therefore, by building a modular code made of several pieces and customizing at runtime our

source, we may succeed to have portable performance.

E.4 Memory Allocations

The memory allocations are critical in the development of HPC applications such that the compu-

tational parts of an application must not allocate any data dynamically. All the dynamic allocations

should be done during an initialization stage. Moreover, in C++ one should use the external li-

braries carefully and for example, it looks inappropriate to declare a standard vector inside a

kernel since it generates dynamic allocations and complex behaviors.

Additionally, the memory should be allocated in one shot because re-allocation generally gives

poor performances (even in the initialization stage) since it generates one allocate and one copy at

each call. It is usually better to find out the size of the final block in a first stage, allocate the entire

block and fill it in a second stage even if the block size estimation and the block filling are almost

similar. The data locality should be enhanced by avoiding the use of pointers in the attributes of

the C++ class or in linked lists of small nodes. In C++ the computational data classes should be

POD (Plain Old Data) and allocated by block.
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