Optimization and Parallelization of the Boundary Element Method for the Wave Equation in Time Domain

Bérenger Bramas

Inria. Bordeaux - Sud-Ouest

PhD defense - Feb. 15th 2016

Advisor: Oliver Coulaud (Inria)

Industrial co-advisor: Guillaume Sylvand (Airbus)

Context

Context

Wave Equation Problems

- Study the wave propagation in acoustics or electromagnetism
- Critical in several industrial fields (design, robustness study)

In our case: **antenna placement**, electromagnetic compatibility, furtivity, lightning, ...

Image from Airbus Group.

Boundary element method (BEM): integral equation over a discretized mesh

Interest of BEM compared to other approaches

- Better accuracy
- Surfacic mesh (easier to produce)

Disadvantages of BEM

Dense matrices (specific solvers)

BEM

Context

BEM

Context

Boundary Element Method (BEM) for the Wave Equation

In Time Domain (TD)

One solve = a range of frequencies

Dense BEM/Matrix Approach

Accelerated by FMM

Accelerated by FMM (Fast-BEM)

Accelerated by H-Matrix

...

BEM

Context

Boundary Element Method (BEM) for the Wave Equation

In Time Domain (TD)

One solve = a range of frequencies

Dense BEM/Matrix Approach

Accelerated by FMM

Accelerated by FMM (Fast-BEM)

Accelerated by H-Matrix

...

Less studied and used

Midely used (academy and industry)

Context Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

BEM

Advantages/disadvantages depend on the application/configuration

Industrial Context

- In partnership with Airbus Group Innovation (financed jointly with Region Aquitaine)
- Airbus solvers:
 - FD-BEM
 - Accelerated by FMM or H-Matrix techniques
 - TD-BEM (experimental)
 - No stability problem (formulation based on a full Galerkin discretization unconditionnaly stable from [Terrasse, 1993])
 - With FMM [Ergin et al., 2000] (trial)

Industrial Context

- In partnership with Airbus Group Innovation (financed jointly with Region Aquitaine)
- Airbus solvers:
 - FD-BEM
 - Accelerated by FMM or H-Matrix techniques
 - TD-BEM (experimental)
 - No stability problem (formulation based on a full Galerkin discretization unconditionnaly stable from [Terrasse, 1993])
 - With FMM [Ergin et al., 2000] (trial)

Objective:

Reduce the performance gap between FD and TD approaches

Context

- Shared/Distributed memory
- Heterogeneous (one or more GPU per node)

Context Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

HPC

Super-computers are mandatory to solve large problems

- Shared/Distributed memory
- Heterogeneous (one or more GPU per node)

Some of the challenges

- Efficient computational algorithm/kernel
- Parallelization
- Balancing
- Hardware abstraction, portable implementation, long-term development, ...

Outline

- Problem Formulation
- BEM Solver (Matrix Approach)
- Fast-Multipole Method Approach
 - FMM Algorithm & Parallelization
 - FMM BEM Solver (Experimental Implementation)
- Conclusion & Perspectives

TD-BEM Application Stages

User inputs, simulation parameters \downarrow Mesh generator, configuration \downarrow Solver \downarrow Post-processing (TD \rightarrow FD)

Context Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

TD-BEM Formulation (10)

Linear Formulation

Notations:

• $\delta\Omega$ discretized in N unknowns/degrees of freedom

text Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

TD-BEM Formulation (10)

Linear Formulation

Notations:

- $\delta\Omega$ discretized in N unknowns/degrees of freedom
- M^k : the convolution matrices (dimension $N \times N$) input
- Iⁿ: the incident wave emitted by a source on the unknowns at time step n - input
- a^n : the state of the system at time step n to compute

Linear Formulation

Notations:

- $\delta\Omega$ discretized in N unknowns/degrees of freedom
- M^k : the convolution matrices (dimension $N \times N$) input
- Iⁿ: the incident wave emitted by a source on the unknowns at time step n - input
- a^n : the state of the system at time step n to compute

Convolution system:

$$M^{0} \cdot a^{n} + \sum_{k \geq 1}^{R^{max}} M^{k} \cdot a^{n-k} = I^{n}$$

$$\Omega$$

$$(1)$$

Linear Formulation

Notations:

- $\delta\Omega$ discretized in N unknowns/degrees of freedom
- M^k : the convolution matrices (dimension $N \times N$) input
- Iⁿ: the incident wave emitted by a source on the unknowns at time step n - input
- a^n : the state of the system at time step n to compute

Convolution system:

$$M^0 \cdot a^n + \sum_{k>1}^{K^{max}} M^k \cdot a^{n-k} = I^n \tag{1}$$

Solve at each time step:

$$a^{n} = (M^{0})^{-1} \left(I^{n} - \sum_{k=1}^{K_{max}} M^{k} \cdot a^{n-k} \right)$$
 (2)

Interaction/Convolution Matrices (M^k)

- Interactions between unknowns
- Symmetric and sparse, $M^k(i,j) \neq 0$ if $distance(i,j) \approx k.c.\Delta t$
- Pre-computed (external tool)

$$a^{n} = (M^{0})^{-1} \left(I^{n} - \sum_{k=1}^{K_{max}} M^{k} \cdot a^{n-k} \right)$$

$$a^{n} = \left(M^{0} \right)^{-1} \left(I^{n} - \sum_{k=1}^{K_{max}} M^{k} \cdot a^{n-k} \right)$$

$$a^{n} = \left(M^{0} \right)^{-1} \left(I^{n} - \sum_{k=1}^{K_{max}} M^{k} \cdot a^{n-k} \right)$$

$$a^{n} = \left(M^{0} \right)^{-1} \left(I^{n} - \sum_{k=1}^{K_{max}} M^{k} \cdot a^{n-k} \right)$$

$$a^{n} = \left(M^{0} \right)^{-1} \left(I^{n} - \sum_{k=1}^{K_{max}} M^{k} \cdot a^{n-k} \right)$$

$$a^{n} = \left(M^{0} \right)^{-1} \left(I^{n} - \sum_{k=1}^{K_{max}} M^{k} \cdot a^{n-k} \right)$$

$$a^{n} = \left(M^{0} \right)^{-1} \left(I^{n} - \sum_{k=1}^{K_{max}} M^{k} \cdot a^{n-k} \right)$$

$$a^{n} = \left(M^{0} \right)^{-1} \left(I^{n} - \sum_{k=1}^{K_{max}} M^{k} \cdot a^{n-k} \right)$$

$$a^{n} = \left(M^{0} \right)^{-1} \left(I^{n} - \sum_{k=1}^{K_{max}} M^{k} \cdot a^{n-k} \right)$$

$$a^{n} = \left(M^{0} \right)^{-1} \left(I^{n} - \sum_{k=1}^{K_{max}} M^{k} \cdot a^{n-k} \right)$$

SpMV (sparse matrix/vector product) Summation stage $\rightarrow K^{max}$ SpMVs

- Permutation, advanced storages/kernels, blocking [White III and Sadayappan, 1997, Pinar and Heath, 1999, Pichel et al., 2005, Vuduc and Moon, 2005]
- Auto-tuning [Im and Yelick, 2001, Vuduc et al., 2005]

SpMV (sparse matrix/vector product)

Summation stage $\rightarrow K^{max}$ SpMVs

- Permutation, advanced storages/kernels, blocking [White III and Sadayappan, 1997, Pinar and Heath, 1999, Pichel et al., 2005, Vuduc and Moon, 2005]
- Auto-tuning [Im and Yelick, 2001, Vuduc et al., 2005]

Low Flop-rate:

- Memory bound operation
 - Flop/Word hardware limit
- Irregular/not contiguous memory accesses
 - Instruction (pipelining, vectorization)
- Not appropriate for GPUs [Garland, 2008, Baskaran and Bordawekar, 2008, Bell and Garland, 2009]

SpMVs MKL/cuSparse (double precision)

Peak performance: CPU Haswell Intel Xeon E5-2680 2,50 GHz core 20 GFlop/s, and K40-M GPU 1.43 TFlop/s.

User inputs, simulation parameters

Mesh generator, configuration, interaction matrices pre-computation

√ Solver

- · Summation stage
- · M⁰ Linear Solver (external tool)

Post-processing (TD \rightarrow FD)

Outline

- Problem Formulation
- BEM Solver (Matrix Approach)
- Fast-Multipole Method Approach
 - FMM Algorithm & Parallelization
 - FMM BEM Solver (Experimental Implementation)
- Conclusion & Perspectives

Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

Computational Ordering

Improving the Summation

Front (k) / SpMV

$$s^{n}(i) = \sum_{k=1}^{K_{max}} \sum_{i=1}^{N} M^{k}(i,j) \times a^{n-k}(j), 1 \leq i \leq N.$$
 (4)

$$s^{n}(i) = \sum_{k=1}^{K_{max}} \sum_{i=1}^{N} M^{k}(i,j) \times a^{n-k}(j), 1 \leq i \leq N.$$
 (4)

Structure of a Slice Matrix

A Slice^j:

- When outer loop index is j
- The concatenation of column j of the interaction matrices M^k (except M⁰)
- Size (N × (K_{max} − 1))
- There is one dense vector per row
- $Slice^{j}(i, k) = M^{k}(i, j) \neq 0$ with $k_{s} = d(i, j)/(c\Delta t)$ and $k_{s} \leq k \leq k_{s} + p$

Computation with *N* vector/vector products (one per line):

- Regular memory access (vectorization, pipelining)
- Low Flop/word ratio (same as SpMV)

olem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

ormulation Matrix Approach FMM Approach Conclusion & Perspectives

ion Matrix Approach FMM Approach Conclusion & Perspectives

Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

Improving the Flop/Word Ratio

Improving the Summation

t Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

Improving the Summation

Improving the Flop/Word Ratio

Flop/Word Ratio

Vector length v = 4, group size $n_g = 4$ ($v \times n_g \times 2$ Flops):

- Vectors product ($\approx SpMV$) : $n_{g}(2v+1)$
- Vector/matrix product : $v + n_e(v + 1)$
- Multi-vectors/vector product : $(v + n_g 1) + (v) + (n_g)$

Flop/Word Ratio

Vector length v = 4, group size $n_g = 4$ ($v \times n_g \times 2$ Flops):

- Vectors product ($\approx SpMV$) : $n_g(2v+1)$
- Vector/matrix product : $v + n_e(v + 1)$
- Multi-vectors/vector product : $(v + n_{\sigma} 1) + (v) + (n_{\sigma})$

Multi-vectors/vector Product (CPU)

Figure : $N_r = 1024$

Figure : $N_r = 20480$

Plots show the GFlop/s with $n_g=8$ for test cases of dimension $N_r \times v$ (in double precision).

Haswell Intel Xeon E5-2680 at 2, 50 GHz (20 GFlop/s)

- Blocking scheme (small conversion overhead)
- Data access appropriate for SIMT/SIMD
- Memory accesses (coalesced, low bank conflicts)
- Data re-use (shared memory)
- CPU/GPU Balancing

- Blocking scheme (small conversion overhead)
- Data access appropriate for SIMT/SIMD
- Memory accesses (coalesced, low bank conflicts)
- Data re-use (shared memory)
- CPU/GPU Balancing

Parallelization

Parallelization

Sequential algorithm:

Parallel Solver (Schematic View)

Parallelization

Parallel Solver with $n_g>1$ (Schematic View)

Parallelization

Airplane Simulation

- Acoustics
- N = 23962
- 10823 time iterations
- $K^{max} = 341$ interaction matrices M^k
- $n_g = 8$
- 70GB of data
- double precision
- Homogeneous node: 24 Cores CPU (128GB memory)
- Heterogeneous node: 24 Cores CPU (128GB memory) and 4 K40M GPUs (12GB memory)

Results

Parallel Efficiency/Percentage (Homogeneous)

Parallel Efficiency/Percentage (Homogeneous)

With GPUs

Results

Figure: Execution time

Figure: Speedup against CPU-Only

With GPUs

Results

Figure: Execution time

Figure : Speedup against CPU-Only

With GPUs

Results

Figure: Execution time

Figure : Speedup against CPU-Only

With GPUs

Results

Figure: Execution time

Figure : Speedup against CPU-Only

Summary:

Summary

- New computational ordering [Bramas et al., 2014]
- Solver with few communication points

Additional contributions:

- Permutations/SpMV
- Efficient SIMD kernel CPU
- Efficient blocking scheme/kernel for GPU [Bramas et al., 2015]
- Dynamic balancing (CPU/GPU)

Limits:

- M⁰ Linear solver
- GPUs' memory
- Interaction matrices construction
- Complexity $\rightarrow O(N^2)$ for each iteration

- Problem Formulation
- BEM Solver (Matrix Approach)
- Fast-Multipole Method Approach
 - FMM Algorithm & Parallelization
 - FMM BEM Solver (Experimental Implementation)
- Conclusion & Perspectives

FMM Operators (1D)

Spatial decomposition → Potential decomposition

$$f_i = f_i^{near} + f_i^{far}$$

- Near field by direct interactions (leaves)
- Far field with FMM operators (tree)

Context Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives FMM Algorithm

FMM Operators (1D)

ullet Spatial decomposition o Potential decomposition

$$f_i = f_i^{near} + f_i^{far}$$

- Near field by direct interactions (leaves)
- Far field with FMM operators (tree)

- Multicore study [Chandramowlishwaran et al., 2010]
- NVidia GPU [Yokota and Barba, 2011]
- Distributed GPU [Hamada et al., 2009]
- Distributed CPU/GPU [Hu et al., 2011, Lashuk et al., 2012, Malhotra and Biros, 2015]
- Using a runtime system (multicore) [Ltaief and Yokota, 2014]

Context Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

FMM Parallelization (34)

Paradigms

- Fork-join
- Parallel-for (OpenMP)

- Parallel-for (OpenMP)

- Task-based
- Tasks pool (OpenMP 3.1) [Agullo et al., 2014]¹

Paradigms

- Fork-join
- Parallel-for (OpenMP)

- Task-based
- Tasks pool (OpenMP 3.1) [Agullo et al., 2014]¹

- Tasks-and-dependencies (runtime systems, OpenMP 4)

Context Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

FMM Parallelization (35)

Tasks-and-Dependencies Model (OpenMP 4, StarPU)

Context Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives
FMM Parallelization

Tasks-and-Dependencies Model (OpenMP 4, StarPU)

Challenges

Granularity

Challenges

- Granularity
- Computational kernels

Tasks-and-Dependencies Model (OpenMP 4, *PU)

Challenges

- Granularity
- Computational kernels
- Scheduling

Context Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

FMM Parallelization (36

Scheduling

Context Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

FMM Parallelization (3)

Scheduling

- Priority
- Work stealing [Blumofe and Leiserson, 1999]
- Heterogeneous Earliest Finish Time (Heft) [Topcuouglu et al., 2002]

Scheduling

- Priority
- Work stealing [Blumofe and Leiserson, 1999]
- Heterogeneous Earliest Finish Time (Heft) [Topcuouglu et al., 2002]

Drawbacks:

- Calibration
- Overhead
- Ready-tasks view

- Heteroprio [Agullo et al., 2015]¹
 - Steady-state: execute tasks where they have the best acceleration factor
 - Critical-state : execute a task by a worker if it does not delay the hypothetical end

¹ Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., and Takahashi, T. (2015). Task-based fmm for heterogeneous architectures. Concurrency and Computation: Practice and Experience.

- Heteroprio [Agullo et al., 2015]¹
 - Steady-state: execute tasks where they have the best acceleration factor
 - Critical-state : execute a task by a worker if it does not delay the hypothetical end

¹ Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., and Takahashi, T. (2015). Task-based fmm for heterogeneous architectures. Concurrency and Computation: Practice and Experience.

- Heteroprio [Agullo et al., 2015]¹
 - Steady-state: execute tasks where they have the best acceleration factor
 - Critical-state : execute a task by a worker if it does not delay the hypothetical end

¹ Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., and Takahashi, T. (2015). Task-based fmm for heterogeneous architectures. Concurrency and Computation: Practice and Experience.

- Hotoroprio [Agullo et al. 2015]

- Heteroprio [Agullo et al., 2015]¹
 - Steady-state: execute tasks where they have the best acceleration factor
 - Critical-state : execute a task by a worker if it does not delay the hypothetical end

¹ Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., and Takahashi, T. (2015). Task-based fmm for heterogeneous architectures. Concurrency and Computation: Practice and Experience.

- Heteroprio [Agullo et al., 2015]¹
 - Steady-state: execute tasks where they have the best acceleration factor
 - Critical-state : execute a task by a worker if it does not delay the hypothetical end

¹ Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., and Takahashi, T. (2015). Task-based fmm for heterogeneous architectures. Concurrency and Computation: Practice and Experience.

Test Case

CPU - 24 Cores	
GPU 1	GPU 2
GPU 3	GPU 4

- N = 30 millions particles
- Spherical Expansion/Rotation Kernel
- $Acc = 10^{-3}$, h = 7 and Granularity = 1500

Trace - Heterogeneous (24CPUs)

Legend: P2P (■), P2M (■), M2M (■), M2L (■), L2L (■), L2P (■) and Idle (■)

Trace - Heterogeneous (1GPU/23CPUs)

Trace - Heterogeneous (1GPU/23CPUs)

Trace - Heterogeneous (2GPUs/22CPUs)

Trace - Heterogeneous (3GPUs/21CPUs)

Test Case

CPU - 24 Cores			
GPU 1	GPU 2		
GPU 3	GPU 4		

- *N* = 30 millions particles
- Uniform/Lagrange kernel
- Acc = $\{10^{-5}, 10^{-7}\}$, h = 7 and Granularity = 1500

Trace - Heterogeneous (4GPUs)

$$Acc = 10^{-5}/7.9s$$

Legend: P2P (■), P2M (■), M2M (■), M2L (■), L2L (■), L2P (■) and Idle (

Trace - Heterogeneous (4GPUs)

$$Acc = 10^{-5}/7.9s$$

 $Acc=10^{-7}/17s$ Legend: P2P (), P2M () , M2M () , M2L (), L2L (), L2P () and

Idle (

Test Cases

Node 1 - 24 Cores Node 2 - 24 Cores Node 3 - 24 Cores Node 4 - 24 Cores Node 5 - 24 Cores Node 6 - 24 Cores Node 7 - 24 Cores

- *N* = 200 millions particles
- Spherical Expansion/Rotation Kernel
- $Acc = 10^{-3}$, h = 8 and Granularity = 2000

Trace - 7 nodes \times 24CPUs

Legend: P2P (■), P2M (■), M2M (■), M2L (■), L2L (■), L2P (■) and ldle (■) .

- Generic
- Kernel independent
- Architecture independent
- Performance portability

Summary:

- Generic
- Kernel independent
- Architecture independent
- Performance portability

Additional contributions:

- Commutativity expression in FMM
- MPI/OpenMP implementation

All included in ScalFMM (C++/HPC library)

Outline

- Problem Formulation
- BEM Solver (Matrix Approach)
- Fast-Multipole Method Approach
 - FMM Algorithm & Parallelization
 - FMM BEM Solver (Experimental Implementation)
- Conclusion & Perspectives

kt Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

Propagation of the Current State to the Future

Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

Propagation of the Current State to the Future

Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

With FMM

- Far interactions in time (between far elements in space) are computed by the FMM
- The spatial decomposition is given by the octree

ontext Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

Overview

- The octree is over a mesh (integration points)
- Interactions matrices between leaves
- Approximation/FMM
 - development in the time-domain
 - multipole: what a cell emits to the outside
 - local: what a cell receives from the outside
 - operators in FD or TD
 - accurate up-to a chosen frequency
 - the results in the TD of the matrix approach \neq FMM

Figure: Truncated unit sphere

text Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

- P2M
 - compute what is emitted by a leaf to the outside

text Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

- P2M
 - compute what is emitted by a leaf to the outside
- M2M/L2L
 - Extrapolation + time shift

FMM Approach Conclusion & Perspectives

- P2M
 - compute what is emitted by a leaf to the outside
- M2M/L2L
 - Extrapolation + time shift
- M2L
 - Convolution product in TD (term-by-term multiplication in FD)

text Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

- P2M
 - compute what is emitted by a leaf to the outside
- M2M/L2L
 - Extrapolation + time shift
- M2L
 - Convolution product in TD
 (term-by-term multiplication in FD)

ntext Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

- P2M
 - compute what is emitted by a leaf to the outside
- M2M/L2L
 - Extrapolation + time shift
- M2L
 - Convolution product in TD (term-by-term multiplication in FD)
- L2P
 - Integration

Results

Case	C-927	C-4269	C-10012
Number of unknowns	927	4269	10012
FMM tree height	3	4	5
Number of leaves	16	64	234
Number of M^k matrices (K^{max})	117	244	370
Number of M^k matrices (leaves)	60	64	49
Number of time steps (T)	2033	4345	6647

TD vs. FD operators:

	FMM			
Stages	TD	TD + FD-M2L	FD	Matrix approach
M ^k Construction	76 s	76 s	76 s	242 s
Solve	58 122 <i>s</i>	53 241 <i>s</i>	97 861 <i>s</i>	7.8 s(*)
Total	58 198 <i>s</i>	53 317 s	97 937 <i>s</i>	249.8 s

Execution time TD-FMM Vs. matrix approach to solve the Case C-927 in double precision.

(*) Our optimized BEM solver.

t Problem Formulation Matrix Approach FMM Approach Conclusion & Perspectives

Parallel Executions (FMM Vs. Matrix Approach)

Results

The captions of the different cases show the overhead of the FMM TD-BEM against the matrix approach.

Summary:

- Preliminary results
- Best configuration: TD + FD M2L
- Not competitive against the direct approach (maybe on larger test cases)
- Any improvement of the matrix creation will make the FMM less competitive

Additional contributions:

- Incomplete/4D FMM
- Sphere discretization/length APS signal

Conclusion & Perspectives

Conclusion

Dense BEM/Matrix Approach

- Based on a new computational order
- Remove the bottleneck of the SpMV
- Implemented efficiently on modern architectures
- Complete BEM solver

FMM

- Generic and state-of-the-art library
- Several parallelization strategies
- Robust OpenMP/MPI implementation (10 billions particles)
- Modern task-based approach
- ScalFMM

Conclusion

FMM BEM Solver (Preliminary)

- Parallelized using ScalFMM
- Best configuration TD operators + FD M2L
- Our implementation is not faster than the direct approach

Perspectives

TD-BEM

- Improve the construction of the interaction matrices
- M⁰ linear solver: small matrix, lots of nodes
- Compare existing solvers (TD vs. FD)

Perspectives

FMM parallelization

- Task-based with implicit MPI communications
- Group-Tree update

Perspectives

FMM BEM

- Study the cost of the solve compare to the direct approach (complexity for some cases)
- Lots of remaining optimizations to test

Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., and Takahashi, T. (2014).

Task-based fmm for multicore architectures.

SIAM Journal on Scientific Computing, 36(1):C66–C93.

Agullo, E., Bramas, B., Coulaud, O., Darve, E., Messner, M., and Takahashi, T. (2015).

Task-based fmm for heterogeneous architectures.

Concurrency and Computation: Practice and Experience, pages n/a-n/a. cpe.3723.

Baskaran, M. M. and Bordawekar, R. (2008).

Optimizing sparse matrix-vector multiplication on gpus using compile-time and run-time strategies.

IBM Reserach Report, RC24704 (W0812-047).

Implementing sparse matrix-vector multiplication on

- Each value from the vectors is read only once (and maybe copied into the buffer)
- The values in the buffer are shifted to avoid reloading

- Each value from the vectors is read only once (and maybe copied into the buffer)
- The values in the buffer are shifted to avoid reloading

- Each value from the vectors is read only once (and maybe copied into the buffer)
- The values in the buffer are shifted to avoid reloading

- Each value from the vectors is read only once (and maybe copied into the buffer)
- The values in the buffer are shifted to avoid reloading

- Each value from the vectors is read only once (and maybe copied into the buffer)
- The values in the buffer are shifted to avoid reloading

In Time or Frequency Domain

Propagation of the wave for several time steps on a target discretized sphere. The different spheres represent the values that will be applied on the included mesh elements.

Contiguous-Blocking Computational Kernel

- (a) the original slice is transformed in a block during the pre-computation stage ($n_g = 3$, $b_c = 11$)
- (b) the blocks are moved to the device memory for the summation stage
- (c) a thread-block (nb threads = 9) is in charge of the blocks from a slice interval and computes several summation vectors

Multi-vectors/vector Product

Computing one slice-row with 3 vectors ($n_g = 3$)

- (a) using 3 scalar products
- (b) using the multi-vectors/vector product

In Shared Memory

- OpenMP parallelization
- Summation divided/balanced between the threads
- No communication during the summation
- Multi-threaded M⁰ linear solver if possible
- NUMA effects are not handled

On Heterogeneous Nodes

- OpenMP parallelization
- One thread/core per GPU
- An interval of the slices is moved on each GPU
- Intervals are balanced between each iteration with a greedy algorithm
- The memory limit of the GPU may reduce their performance

Application Example

 $\mathsf{FD} ext{-}\mathsf{BEM} + \mathsf{FMM}$ (antenna at 1GHz)

Image from Airbus Group.

Cone-Sphere Test Cases

Case	C-927	C-4269	C-10012	C-22468
Number of unknowns	927	4269	10012	C-22468
FMM tree height	3	4	5	6
Number of leaves in the FMM tree	16	64	234	936
Number of NNZ interaction matrices (K ^{max})	117	244	370	551
Number of NNZ matrices between FMM leaves	60	64	49	37
Number of time steps (T)	2033	4345	6647	9957
Size of the simulation box	3.3	7.3	11	16
F _{max}	348	337	335	334
Incomplete FMM coefficient $I = h - 1$	16	18	13	10
Incomplete FMM coefficient $I=2$	16	36	52	80

Multi-vectors/vector Product (GPU)

For the Contiguous-Blocking scheme:

	Width (b_c)								
	16	32	64	128	16	32	64	128	
	GPU			CPU					
Single	243	338	431	496 (11%)	4.3	5.5	7.8	6.8 (17%)	
Double	143	199	248	286 (20%)	3.9	5.6	4.2	4.3 (21%)	

GFlop/s for 420 slices (6400 rows and b_c columns) (%) percentage of the peak performance

- Level by level
- Critical balancing
- Possible bottleneck (top of the tree)
- Difficult to mix near/far fields

Fork-join+Message-passing (Hybrid OpenMP/MPI)

- Distribute the tree between nodes
- Progress level by level
- Communication between all stages

Fork-join+Message-passing (Hybrid OpenMP/MPI)

- Distribute the tree between nodes
- Progress level by level
- Communication between all stages

Poor parallelism expression

Trace - Heterogeneous (4GPUs)

$$h = 7/n_{
m g} = 1500/Acc = 10^{-7}/17s$$

24 threads, N = 30 millions, uniform distribution, Uniform/Lagrange

Trace - Heterogeneous (4GPUs)

24 threads, N = 30 millions, uniform distribution, Uniform/Lagrange

Flop/Cost Estimation

Figure : Matrix generation cost estimation

The numbers above the slower plot represent the slow-down factors against the faster method.

Flop/Cost Estimation

TD-BEM FMM
TD-BEM FMM (FD M2L)
Matrix Approach

10¹⁶
388
203
10¹³
320
10¹⁰
1,000
10,000
20,000

Number of unknowns

Figure : Matrix generation cost estimation

Figure : Summation stage Flop estimation

The numbers above the slower plot represent the slow-down factors against the faster method.

Reducing the Complexity

Direct computation $O(N^2)$

Reducing the Complexity

Direct computation $O(N^2) \rightarrow FMM O(N)$

Reducing the Complexity

Direct computation $O(N^2) \rightarrow FMM O(N)$

Spatial decomposition → Potential decomposition

$$f_i = f_i^{near} + f_i^{far}$$

- Near field is computed by direct interactions
- The far field is done using different operators

Results (17)

Airplane Simulation

- Acoustics
- N = 23962
- 10 823 time iterations
- $K^{max} = 341$ interaction matrices M^k ($\approx 5.5 \times 10^9$ NNZ)
- Computing $s^n \approx 11$ *GFlop*
- Total $\approx 130\,651\,GFlop$
- $n_g = 8$
- 70GB of data
- CPU node: 2 Dodeca-core Haswell Intel Xeon E5-2680 at 2,50 GHz and 128 GB (DDR4) of shared memory
- GPUs per node: 4 NVIDIA Kepler K40M GPU (745MHz), 2880 Cores, 12GB of dedicated memory

Results (18)

Hybrid MPI/OpenMP

Efficiency: Uniform distribution, Spherical Expansion/Rotation Kernel, N=200 millions, h=8, $Acc=10^{-3}$, from 1 to 50 nodes (24 threads per node), for np=50 the execution time is 2.24s

Group-tree

- Granularity G
- A group \rightarrow G cells/leaves
- Good locality
- Low iteration complexity
- Dependencies between cells ≠ between groups

Results (20)

Trace - Shared Memory - 24CPUs

N=20 millions, ellipsoid distribution, Spherical Expansion/Rotation Kernel, $Acc=10^{-3},\ h=11$ and $n_{\rm g}=8000$ in 5.2s.

Legend: P2P (), P2M () , M2M () , M2L (), L2L (), L2P () and Idle ()

Results (21)

Trace - 24CPUs

N=30 millions, uniform distribution, Spherical Expansion/Rotation Kernel, $Acc=10^{-3},\ h=7$ and $n_{\rm g}=1500$ in 15.5s.

Legend: P2P (\blacksquare), P2M (\blacksquare), M2M (\blacksquare), M2L (\blacksquare), L2L (\blacksquare), L2P (\blacksquare) and Idle (\blacksquare)

Test Cases

Interactions between N particles for two distributions:

Figure: Ellipsoid

The height of the tree (h) is chosen such that the execution time is minimal in sequential.

Parallel Strategies for FMM BEM

Three strategies (Fork-join OpenMP)

Threaded FMM: divide each level between threads (ScalFMM classic)

Threaded kernel: divide the work inside the kernel

 Mix FMM/Kernel: two layers of parallelism, one in the FMM and a second in the kernel

Parallel Executions

The captions of the different cases show the overhead of the FMM TD-BEM against the matrix approach.

Parallel Executions FMM Vs. Matrix Approach

—— Matrix generation —— Solve